欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
美术研究|中国传统工艺美术品牌发展报告!鸟润

美术研究|中国传统工艺美术品牌发展报告!

文:陈岸瑛、高登科陈岸瑛,博士,清华大学美术学院副教授、博士生导师、艺术史论系主任。高登科,清华大学美术学院博士。【内容摘要】本文结合问卷调研、数据分析、个案研究和实地考察,客观描述了中国传统工艺品牌发展现状,并就其发展阶段、规律和趋势做出一系列分析和研判。本文认为,中国传统工艺已从复兴走向振兴,品牌建设方兴未艾,跨界价值衍生初现端倪。【关键词】传统工艺 非物质文化遗产 品牌 新时代21世纪以来,中国传统工艺迎来了新的发展机遇。2017年3月,文化和旅游部等三部委联合印发《中国传统工艺振兴计划》,为传统工艺振兴指明了方向。2017年以来,受文化和旅游部委托,本课题组收集整理了一批传统工艺振兴案例,对其中的振兴规律展开了初步研究。2019年,在教育部人文社会科学研究规划基金支持下,本课题组展开了振兴中国传统工艺的目标、标准与策略研究,在实地调研基础上拟定了传统工艺振兴与否的定性和定量标准,并借助问卷星平台为传统工艺企业提供了振兴状态自测量表。#绘画#2020年1月初至2月底,课题组从参与调研的传统工艺企业中获取310份有效问卷,不仅从企业得分与实际运营情况对比中验证了振兴标准设定的有效性,也从答卷中获取了一系列有价值的统计数据。根据事先拟定的测评标准,310家企业中尚不具备振兴趋势的有99家,表现出振兴趋势的有111家,初步达到振兴状态的有55家,达到较好振兴状态的有38家,达到完全振兴状态的有7家。本文假设,在社会主要矛盾发生变化的新时代,随着人民群众生活品质的提升和文化需求的日益增长,传统工艺在市场经济环境下所具有的价值,除了其固有的产品价值,还有从历史文化遗产转化而来的品牌价值。本文认为,构建本土手工艺品牌,兑现传统工艺背后的无形文化价值,是传统工艺从业者在新时代的历史选择。本次调研,初步印证了这一理论假设。参与调研的多数企业已具有品牌意识或拥有独立品牌,且从与其他行业的跨界合作中获得了超出产品之外的文化附加值和品牌溢出价值。以下将从企业和品牌发展阶段、品牌市场定位、品牌传播维度和品牌公关与跨界价值衍生等四个方面,结合问卷统计数据和实地考察经验,就中国传统工艺企业品牌发展状况进行分析和预判。一、企业和品牌发展阶段自20世纪90年代工艺美术国营厂解体转制以来,传统工艺生产经营单位多数以个体、作坊与小规模企业形态存在。参与本次调研的310家传统工艺企业,年销售额30万元以下的占比29.35%,年销售额30—50万元的占比11.29%,年销售额50—100万的占比18.06%,年销售额100—500万的占比24.52%,年销售额500—1000万的占比7.74%,年销售额1000万元以上的占比9.03%。从企业所有制来看,国营、国资、集体所有制企业占比仅有5.16%;个体、家庭企业占比最多,合计52.9%;家族企业占比12.9%;民营合伙人制企业占比8.06%;民营股份制企业占比20.97%。从企业经营模式来看,1.29%的调研对象以家庭副业谋生;个人工作室占比28.39%;有固定员工或徒弟的作坊和初创小规模的企业数量最多,占比52.26%;规范化管理的企业占比18.06%。从生产方式来看,纯手工制作的企业占比52.9%;手工制作为主,机械加工为辅的企业占比28.39%;兼有手工制作和机械化生产两条生产线的企业占比18.71%。本次发放的振兴状态自测量表,分4个方面给上述传统工艺企业评分。从得分情况来看,参与测评的企业普遍在品牌推广方面得分较低。这说明传统工艺品牌建设尚在起步之中。在参与调研的310家企业中,260家企业宣称拥有自有品牌(其中223家已注册并使用商标),其中203家在自有品牌基础上进行独立生产;6家拥有自有品牌,以外包的形式进行生产;51家在自有品牌的基础上,通过独立生产和外包加工两种方式进行经营。在无自主品牌的50家企业中,46家为客户提供定制服务,4家为其他品牌代工。总体来看,大多数传统工艺企业已具备品牌和法律意识并拥有自有品牌,近五分之一的企业已开始输出品牌、寻求代加工。不过,在310家企业中,以工艺美术大师或非遗代表性传承人称号为品牌的企业占比仍不低于62.58%。传统工艺企业的创始人多半有工艺美术大师或非遗代表性传承人称号,而这些体制内授予的称号及其连带的品牌效应,并非市场经济环境下消费者自然选择的结果。从国内艺术市场的发展规律来看,在计划经济向市场经济转轨过程中,随着画廊、拍卖行等商业机制和美术馆、双年展等学术评价机制的建立,按体制内头衔来为艺术品定价的机制已逐步让位于基于自由竞争的定价机制。与艺术行业对比,传统工艺行业的评价和定价机制目前尚不成熟。所幸不少传统工艺企业已意识到上述问题,通过品牌建设,逐步将大师个人品牌转化为基于市场经济逻辑的家族和企业品牌,如姚建平刺绣、金大师乌铜走银等。本次调研结果显示,运营家族品牌的占比28.71%,运营企业品牌的占比52.26%,二者合计80.97%,明显超过大师个人品牌运营企业数。这说明,半数以上的传统工艺企业正在适应市场化的定价机制,靠产品服务质量和市场信誉而非靠“头衔”来证明自身的价值。《中华手工》杂志2019年12月发布的《2019中国传统工艺品牌调研报告》,也从其他统计口径(如品牌中英文名称和广告语)印证了这种新旧品牌运营模式各占一半的现状。产品质量是品牌的核心竞争力。材料与工艺研究、面向现代生活的原创设计,是提升传统工艺产品质量的保障。参与调研的企业在拥有了自有品牌及一定生产规模后,多数将重心转移到材料工艺研究与设计研发。310家企业中,70.32%的企业拥有原创设计能力,69.35%的企业在材料、工艺方面有改良,44.84%的企业在工具和辅助设备方面有改良。调查结果显示,大多数传统工艺企业拥有原创设计能力,另有相当一部分企业具有了专利意识,在申请专利、改良材料、工艺、工具和辅助设备等方面加大投入,通过提高质量、降低成本提升了品牌竞争力。蜀江锦院、丰同裕染坊、姚绣等传统工艺品牌在这方面积累了丰富经验,值得学习借鉴。二、品牌市场定位品牌市场定位主要体现在目标客群和产品定位两个方面。传统工艺行业的目标客群,以往以政府、藏家、专业客户等熟人群体为主。八项规定出台后,政府采购及礼品市场受到极大冲击;随着消费群体的年轻化,传统工艺品的收藏、投资功能不断弱化,实用和享受功能日益凸显;随着文化消费的普及和信息技术的提升,传统工艺销售逐渐从熟人市场向陌生人市场转移。从调研结果来看,在310家传统工艺企业中,目标客群以政府部门为首的目前仅占2.26%,以专业圈为首的占18.39%,以小众消费者为首的占50.32%,以大众消费者为首的占29.03%。传统工艺品牌的目标客群,已从过去的熟人和特殊销售对象,转向自由市场上的小众和大众消费者。从产品首要销售群体来看,其他城市和地区的使用者占比最多,说明产品具有较强的实用功能,能与同类型的工业化产品竞争,且拥有异地代理和销售渠道;本地消费者和慕名而来的藏家占比接近,且比例较高,说明产品信誉度和品牌美誉度较高,能吸引固定的客群;来本地参观的游客占比最小,说明多数企业的产品定价较高或当地旅游业不发达。产品定位,包括产品价位和主打产品功能类型两方面。以往的传统工艺企业,一般只有高价位产品,即作为艺术品出售的手工艺品。本次调研结果却显示,兼有多档产品生产线的企业占绝大多数,兼有高档和中档产品的企业和兼有高中低三档产品的企业占三分之二以上。这说明大部分企业具备了满足不同消费者需求的多样化生产能力,其品牌影响范围已扩大。以往的传统工艺企业,偏向于生产不具有实用功能的欣赏品和礼品。本次调研结果显示,主打产品定位为审美和馈赠功能的企业仍占较大比例,但实用功能所占比例却与之相当。其余如装饰功能、膜拜功能、教育功能等,也兼具实用性,能促进传统工艺走进日常生活。云南鹤庆金属工艺的振兴经验,是从民族、宗教用品市场转向侧重实用功能的茶具市场,从而拥有了更为广阔的受众群体,其中“寸银匠”“李小白银壶”等品牌在产品功能设计和用户体验方面的探索值得关注。三、品牌传播维度品牌的建立,除了靠优质产品赢得消费者信赖,也离不开积极主动的宣传推广。传统工艺企业与普通文化企业的不同之处,在于传承发展非物质文化遗产的使命和动力。地方民众的认同是非遗项目申报和存续发展的基础。故此,传统工艺企业不仅要像一般企业那样努力扩大影响范围,还需关注品牌的本地影响力。调查结果显示,310家中的144家,将近半数传统工艺企业在当地缺乏传播渠道,这或许是因为这些企业在制订品牌传播策略时忽略了当地民众,或者是因为地方政府对此不够重视,导致企业缺乏在本地传播的渠道和资源。其余166家拥有本地传播渠道的传统工艺企业,其展厅、展柜主要集中在当地知名景点。其余传播渠道依次为大宾馆、飞机场、火车站和知名餐馆,但占比都不高。飞机场、火车站为公共场所,展销场所主要由政府部门协调提供;宾馆、餐馆为商业空间,入驻难度大,但也更值得期待。在文化产业中,“艺术+商业空间”这一创新发展模式方兴未艾,相信不久也会扩展到非遗领域,形成“非遗+商业空间”的共享经济模式,从而为提升非遗项目的本地能见度提供助力。品牌国内外知名度是品牌影响力的重要表征。本次调研结果显示,77.42%的企业经常参加国内知名展会,69.35%的企业经常参加政府部门举办的国内文化交流活动;49.35%的企业有作品被国内公立博物馆收藏,21.94%的企业在国内知名美术馆举办过独立展览;15.16%的企业在一线城市建立了推广平台或销售渠道,23.55%的企业与国内外知名品牌在境内合作生产过产品或举办过活动,3.55%的企业有明星代言品牌或产品。对于大多数传统工艺企业来说,请明星为品牌代言难度较高,但像“汝醉”这种核心成员不超过5人的初创品牌,却懂得借助《清平乐》等热播流量来为汝瓷酒具带货,这种借船出海的方式是值得其他传统工艺企业借鉴的。中国传统工艺品牌传播近年来在海外也有不错的表现,24.52%的企业参加过世界知名展会,19.68%的企业与国内外知名品牌在境外合作生产过产品或举办过活动,17.1%的企业有作品被世界知名博物馆收藏,10.65%的企业在海外建立了推广平台或销售渠道。受惠于“文化走出去”政策,更有36.13%的传统工艺企业经常参加中国官方主办的海外文化交流活动。近20年来,移动互联网已逐步成为品牌传播的主流渠道,而传统工艺行业对此的反应是相对滞后的。2016年本课题组与阿里巴巴合作为非遗传承人做淘宝直播时,绝大多数传承人并不觉得有此必要。2020年春肆虐全国的新冠疫情,却以倒逼的方式让无数传统工艺企业意识到在线推广的重要性。为此,文化和旅游部非遗司与阿里巴巴、京东、苏宁、拼多多、美团、快手、东家等网络平台合作,在今年“文化和自然遗产日”前后推出了首届“非遗购物节”。本次调研在疫情爆发之前进行,其结果显示,73.23%的企业仍以线下销售为主,相信在不久的将来,这一局面将大大改观。四、品牌公关与跨界价值衍生传统工艺产业发展离不开政府扶持和公益资助,这一点中外皆然。相较而言,近年来中国政府在传统工艺扶持方面的投入要更大一些。从调研结果来看,大多数传统工艺企业都获得过政府扶持,且多个企业获得过不止一种资助。在受资助的种类里,最多一项为与品牌推广直接相关的“参展、对外交流和媒体报道机会”,达到57.1%。其余的资助,特别是人才支持也有不少,这一点对于企业发展和品牌建设至关重要。2015年启动的“中国非遗传承人群研培计划”,迄今已使近10万传统工艺从业者受惠,多数传承人显著提升了传承水平和创新能力,不少传承人成为创新创业、非遗扶贫带头人,大批年轻有为的“传二代”为家族企业的品牌化发展注入了创新创造活力。传统工艺从业者一方面从政府获得各类资源和机会,另一方面也回报地方公共文化事业,甚至在地方文化产业发展中扮演重要角色,如景德镇、宜兴、龙泉、德化、镇湖等地,都是靠传统工艺带动了地方经济和文化繁荣。调研结果显示,超过85%的传统工艺企业对所在地经济文化发展有带动作用,传统工艺品牌效应对于提升地方知名度、促进文化旅游发展、集聚创意人才具有显著作用。除了政府公关,传统工艺品牌发展还离不开学术界的认可和支持。调研结果显示,接近九成的传统工艺企业与学术界接触频繁。66.13%的企业与相关专家学者保持密切联系;48.06%的企业经常被邀请到高校讲学;63.23%的企业经常参加非遗进校园活动;42.9%的企业有院校设立的教学实习基地;46.45%的企业经常与院校开展产学研合作。得益于院校和学术界的智库支持,绝大多数传统工艺企业在非遗传承基础研究方面有投入、有成果。无论是对非遗项目的历史演变和传承脉络梳理,还是对材料、工艺的深入研究,都有助于传承人及其企业把握传统工艺背后的无形文化价值,并将这种文化价值转化为产品和品牌价值。传统工艺企业所拥有的无形文化价值和品牌效应积累到一定程度,便可以通过“非遗+”模式,产生产品销售之外的品牌衍生价值。令人欣喜的是,参与本次调研的传统工艺企业,近85%有跨界合作的经验。通过各种机会,25.48%的传统工艺企业与设计师、设计公司开展过合作。目前跨界合作较多的领域,依次为教育、文博文创、旅游、地产建筑家居和服装饰品行业。课题组的实地观测经验与上述统计结果基本吻合。产量低、单价高的传统工艺,如想实现产业化、批量化,一般而言需要在与其他行业跨界合作中实现质和量的转化。目前较容易实现的跨界合作形式,是“非遗+教育”和“非遗+旅游”,如非遗体验课、材料包、非遗特色游路线开发,再如投放到文旅、教育渠道的文创衍生品。地产、建筑、家居和服装饰品行业虽然消费需求和经济体量大,但目前尚缺乏专业经纪人或中介公司来完成传统工艺企业与这些行业的对接,因此占比不高。跨界,意味着从熟悉的领域跨入不熟悉的领域。传统工艺品牌目前虽然大量跨界到旅游和教育行业,看起来热闹非凡,其专业化发展程度却乏善可陈。专业人做专业事,强强联合、分工协作才是跨界合作之道。传承人或许擅长做手艺,却并不擅长中小学教育,然而国内多数地方开展的非遗教学只是简单地请传承人展示技艺,却很少针对不同年龄段的学生开发不同的课程。再如景区中的非遗体验,绝大多数只是将某个容易操作的环节搬到现场,一成不变地让游客体验同一个动作。这些手工体验活动很少经过精心设计,也没有以寓教于乐的方式帮助游客领略传统工艺背后的历史文化底蕴。以上现象表明,传统工艺品牌跨界合作尚处于粗放型的发展阶段。不过,中国传统工艺品牌发展趋势整体向好,发展空间较大。如前所见,参与调研的传统工艺品牌大多数已具有良好的发展基础,无论是生产能力还是基础研究、原创设计能力,无论是政府扶持还是学术支撑,无论是推广销售渠道还是消费市场规模,都有不错的体现。在此基础之上,已涌现出一批优秀的本土手工艺品牌。其中部分品牌已产生了超出产品之外的价值,并通过与其他行业的跨界合作兑现了这一溢出价值。作者:陈岸瑛、高登科本文为2019年度教育部人文社会科学研究规划基金项目“振兴中国传统工艺的目标、标准与策略研究”(项目批准号19YJA760004)阶段性成果。美术研究|学画所以养性情,且可涤烦襟,破孤闷,释躁心,迎静气美术研究|中国画线条除表现结构轮廓,还传达画家的情感意趣!美术研究|论中国山水画中的空间表达和意境表现!美术研究|论明代山水画中的寻道者意象与艺术主流的终结!以笔墨为例,绝不仅仅是笔与墨在宣纸上画出笔道、渗化墨象!

蓝乌

医药CMO行业深度研究报告

报告分析师:赵波、陈晨▌CMO行业:助推药物实现商业化生产CMO行业简介CMO主要侧重临床及商业化阶段制药工艺开发和药物制备。医药CMO,即医药生产外包服务,通过合同形式为制药企业在药物生产过程中提供专业化服务,包括临床和商业化阶段的药物制备和工艺开发,涉及临床用药、中间体制造、原料药生产、制剂生产以及包装等服务。药物开发是一项高技术、高投入、高风险、长周期的复杂系统工程,主要分为药物发现及前期研发、临床前药学实验、工艺合成、临床试验及商业化生产五阶段。根据外包服务阶段的不同可以划分为CRO和CMO,随着CMO市场趋于成熟,还衍生出定制生产(CDMO)、产研结合(CRO+CMO/CDMO)等多种模式。CMO按服务类型主要划分为API(ActivePharmaceuticalIngredient,原料药和中间体)和DP(FinishedDosageForms,最终剂型)。按照服务类型划分,CMO主要分为API和DF两部分,其中API服务在CMO行业中占据约60%的市场份额,临床药物制造比重最小,但在创建商业制造关系中至关重要。CMO行业在欧美等发达国家趋于成熟,在我国等新兴市场处于快速发展阶段。目前,制药企业为缩短研发周期、控制成本、降低风险、提高效率,逐步将资源集中于疾病机理研究、新药靶点发现及研发早期阶段等核心业务,而将后续生产委托给CMO企业,尤其是专用设备需求高的生物制品和目标市场狭窄、生产成本高的利基药物,也为小规模企业提供了一种保留知识产权并使其药物商业化的选择。近年,全球CMO市场平均增速为13.03%,欧美CMO行业起步较早,现阶段产业构架已趋于成熟,而新兴市场国家的CMO行业由于各项机制逐渐健全、成本相对低廉等因素迅速崛起,其中,我国CMO行业以18.3%的增速快速发展。产业链:“向CRO延伸+向CDMO优化”成为CMO发展方向CMO行业上游为CRO及精细化工领域,下游为需求日趋庞大的医药制造市场。为药物生产服务的CMO行业处于药物从研发开始至商业化销售的中间环节。上游可以分为两类:一是以基础化工原料为初始物料进行专用医药原料制作的精细化工行业,在2007年达到景气高点后持续向下,预期近年对CMO行业暂无显著影响;二是以医药研发外包服务为主的CRO行业,近年,“CRO+CMO/CDMO”的纵向一体化服务模式成为医药外包领域主要扩展方向。下游是产生外包需求的医药制造业,产业化明确分工促使外包需求日趋庞大,全球CMO市场主要集中在欧美地区,以中国为首的新兴市场正在快速发展中。作为资本密集型行业的生物制药公司,开发成本高、交货期长、竞争激烈,为保持利润率,必须建立持稳向上的市场份额,在专利药物到期时迅速补充新药研发管道,同时,CMO服务也是仿制药企低成本高效率抢占首仿地位及更多市场份额的重要途径。CMO服务在临床试验和生产阶段追求目标各有侧重。在药物临床阶段,制药企业希望尽快推出产品占领市场,比如,临床I期要求CMO企业尽快开发出临床实验用药的工艺路线,临床II期注重提高工艺开发的成功率,从临床III期开始,持续的药物生产成本优化才开始被关注,因此,临床阶段CMO服务快速研制的工艺路线一般难以满足药物上市后规模化生产对经济效益、环保合规方面的要求,需要做进一步改进。CMO行业不断向上游CRO领域延伸。传统CMO服务主要集中在临床和商业化阶段的药物制备和工艺开发,激烈的市场竞争促使CMO行业逐渐向上游CRO领域扩张,形成“CRO+CMO”一体化运作模式,即在新药发现早期介入,同步药企研发各阶段,实现各环节数据精密衔接、工艺流程整体布局,提高服务效率,保障药品质量稳定性、可持续性,增强客户黏性。目前,“CRO+CMO”一体化服务作为一种动态的商业模式,正逐渐跨越整个医药价值链。CDMO模式成为CMO行业最终战略选择。传统CMO行业依靠制药企业提供的生产工艺及技术支持进行单一代工生产服务,为单纯的产能输出,在激烈的市场竞争中,逐渐难以满足客户发展需求,CDMO应运而生,即在基础工艺流程及技术水准上,提供创新性的药物配备、工艺路线开发、生产流程优化。相比于CMO,高技术附加的CDMO服务获取可持续性商业订单的能力更强,盈利空间更大,在项目执行中能够更快速地延伸和扩充专业技术储备,据RootsAnalysis预测,在竞争白热化及需求多样化驱动下,CMO行业将逐渐向拥有独立无形资产、创造更高价值的高端药物定制生产(CDMO)演变。▌全球CMO市场方兴未艾预期2021年全球CMO市场规模可达1025亿美元预期2021年全球CMO市场将达到1025亿美元规模,2017-2021年复合增速为13.03%。据BusinessInsights统计,2017年,全球CMO市场规模为628亿美元,预计将以13.03%的增速发展,2021年达到1025亿美元规模,大约占据制药企业年营业额的11%。NiceInsight通过调查2000余名制药企业外包意向,发现约70%的企业预期2018年外包费用在1000-5000万美元,这一比例2014年仅为38%,同时大额外包(>5000万美元)的企业比重持续上升。预期随着行业纵深化推进,CMO将提供更高效率服务,客户持续性及药品稳定性得以保障,同时催生出更大的外包市场,产生“1+1>2”效应。CMO领域渗透率低,发展空间大。据Pharma预测,2017年,医药行业约30%的开发、配方和制造支出流向外包领域,预计2022年将达到38.5%,CMO领域的渗透率略低于CRO,发展空间广阔。其中,化学药物外包是CMO收入的主要部分,约为515亿美元,占据CMO市场82%的份额,随着生物药物CMO的快速扩充,预计2021年化学药物CMO市场份额将缩小至78%。在CMO细分领域,API和DP具有开发设计能力的业务渗透率相对较低,主要原因是API设计和DP设计对CMO企业要求更高,需要企业具备药物处方研究、剂型改进、工艺优化、创新开发等高技术附加能力,即CDMO,随着制药企业外包需求多样化及行业发展需要,预计CDMO将成为CMO行业发展最快的细分领域。全球CMO市场主要集中于欧美,亚太地区快速追赶。类似于医药发展结构,当下全球CMO市场主要集中于欧美,但随着新兴市场崛起.2017年,欧美市场市占率相比于2011年76.87%的绝对优势稍有下降(70.64%).据RootsAnalysis预测,2028年,北美在整个CMO市场仅占据34.3%的市场份额,其次是亚太(34.0%)和欧洲(30.4%),亚太地区快速追赶,外包行业CAGR(7.1%)显著高于欧美地区(2.9%)。多重驱动因素实力支撑CMO行业快速发展受益于全球医药市场迅速发展,CMO行业迎高速发展契机预期全球医药市场将以5.1%的增速增长,2021年达1.48万亿美元市场规模。作为产生外包需求的医药市场,其兴衰决定了CMO行业的景气程度,近年,由于人口老龄化、预期寿命延长、消费结构升级等因素,促使健康支出大幅提升,同时,中美作为主要医药市场,其医改导致医疗服务范围扩大,预期全球医药产品需求持续扩增。据IMS统计,2017年全球医药市场容量为1.21万亿美元,2012-2017年复合增速为4.7%,预期未来几年至少保持5.1%的增速水平,2021年将达到1.48万亿美元。医药研发投入不断增大,带动CMO行业需求持续扩增。制药行业的独特之处在于能够创造需求,即推出尚未满足需求或疗效更优或副作用更少的新疗法以产生以往不存在或不明显的需求,制药企业通过对附加额外需求的新药物预期反推出更高额的研发预算,同时,现有药物逐渐扩展的新适应症也使后期临床开发支出大幅上升。据EvaluatePharma预测,2017年全球药物研发支出为1580亿美元,在研小分子新药5643个,预计2022年全球研发费用将达1810亿美元,随着药物研发投入增加,FDA批准新药数目整体个数也稳健上涨,虽然2016年批准数量同比下降超过50%,但截至2017年5月,CDER已经批准了21种新药,而截至2016年5月仅获批15种,由此表明获批数量下降的主要原因是批准的时间安排而不是研发结构变动。据Pharma统计,大约50%的研发费用用于临床前和后期开发阶段化合物研究,另50%用于CMC,CMC作为高频外包领域,预期将不断增长将助推CMO行业发展。医药研发难度加大,企业更倾向于高效率、专业化的外包服务平均新药研发成本达到40亿美元。近年,随着疾病谱扩增以及药物结构复杂化,新药研发成本迅速增加。据Tufts调查,平均新药研发成本已经由2003年的8.02亿美元上涨到2010年的25.58亿美元,EvalatePharma则表示自2006年以来,每个NME的平均研发费用已达到40亿美元,此外还需要平均423个科学家、6587个临床试验、700多万小时的投入,制药生产力的压力与日俱增。新药研发平均耗时10-20年。据citeline统计,一个新药品种从进入实验室至上市平均耗时10-20年,导致药物上市后的专利保护期缩短,新药研发企业承受巨大的潜在损失。新药研发成功率低。麦肯锡在《Nat.Rev.DrugDiscov.》提到2006-2011年,新药研发成功率仅为7.5%,2012-2014年,由于生物大分子良好的选择性和低脱靶毒性(生物药在后期开发阶段,即从临床III期到获批上市具有高达74%的成功率),药物研发总体成功率略有提升,但仍旧难以回升直90年代16.40%的成功率,2016年,top12医药巨头药品投资回报率仅为3.7%。CMO服务助推药物实现高标准、高效率、低成本生产。新药研发难度升级,对制药工艺提出更大要求,如何将实验室不计成本、不计收率开发的克级化合物放大至具有商业价值的规模化生产成为药品上市亟需解决的难题,CMO企业专业化的技能累积往往比制药企业拥有更优质的制造能力,因此,受限于资金、精力的制药企业需要与CMO企业合作,通过合成设计、工艺优化等实现药物高标准、高效率、低成本生产。据ChemicalWeekly估计,生产环节所用成本约占新药研发总成本的30%,而在低成本国家进行外包生产可以使生产成本下降40-60%,即新药研发总成本下降15%左右。孤儿利基药物的兴起是CMO行业发展的重要推动力利基药物市场(孤儿药市场)迅速崛起。随着技术精细化、营销成本低、利润空间大、竞争有限、政策倾斜,甚至是专利到期后对仿制药企的低诱惑力,需求尚未得到满足的高度特异性的窄谱利基药物如雨后春笋般崛起。美国于1983年推出《孤儿药法案》,治疗罕见疾病新疗法的数量出现明显变化,在此之前的十年内,FDA批准的用于罕见疾病新疗法仅10种,但到2010年,FDA已批准了超过350种孤儿产品,现在约占所有新批准药物的1/3,新加坡、日本、澳大利亚及欧洲在20世纪90年代纷纷效仿,随后,众多国家的孤儿药领域法制体系逐渐完善,孤儿药获得越来越多的关注。EMA2017年年均申请上市的孤儿药新药及高级治疗药物分别为19.5和2.5件,相比于2010年至少翻一番。CDER在《2018年度新药评审报告》报告中指出,截止2018年11月30日,CDER共批准了55个NME药物,其中31个为孤儿药,占比56%,有史以来第一次批准的大多数NME是用于治疗罕见疾病的孤儿药。孤儿利基药物的兴起是CMO行业发展的重要推动力。利基药物的兴起使得能够产生数十亿美元市场的针对大批患者的广谱治疗药物市场份额缩减,KPMG首席医疗顾问HilaryThomas表示医药行业正由大规模覆盖面走向利基市场,然而,窄谱立即药物的成本和开发历程与广谱药物大致相同,经济法则使得最具成本效益的医药外包行业备受青睐,利基药物的兴起成为CMO行业发展的重要推动力。“专利悬崖”致使CMO服务备受青睐“专利悬崖”促使CMO服务成为原研厂商保持利润率、仿制药企抢占市场份额的重要途径。新药研发的高成本高风险决定专利期内的高昂药价,回收研发成本并为下一期新药积累资本,创新药专利到期后仿制药便可上市销售,且售价大幅低于创新药,由此导致的原研厂商价格和销量悬崖式下跌便称为“专利悬崖”。原研药企业为保持利润率,扩充新药管道的同时将到期药物规模化生产外包,而仿制药企业如何高效高质地推出成本低廉的仿制药并抢占首仿地位(首访药物价格一般为原研药的70%-80%,市占率仅次于原研药)成为竞争关键,因此,专业化CMO服务便成为众药企首选方案。预计2017-2021年将有1570亿美元药品受专利到期影响,“专利悬崖”为CMO行业带来约290亿的庞大市场。2017年,全球专利期内的药物取得7370亿美元的销售规模,约占整体药品市场的60%,据健识局统计,2017-2029年,将有105款全球重磅药物专利到期,仅2018年便有25种,包括美罗华(利妥昔单抗注射液)、乐瑞卡(普瑞巴林胶囊)等年销售额突破30亿美元的重磅品种。“自主研发+并购整合”,领先CMO企业持续强化制造能力CMO行业代表性企业多位于欧美等医药产业发达地区。类似于医药产业发展格局,在全球医药外包领域,具有代表性的CMO企业大多位于欧美发达地区,其中,美国Catalent、瑞士Lonza、德国勃林格殷格翰(BI)、荷兰DSM等是行业内的领军企业,此外,还有2017年相继退市但具有代表性的美国AMRI、加拿大Patheon。CMO企业自主研发投入高,超过75%将用于增强技术制造能力和增加服务产品。未来五年,CMO领域超过75%的研发投入将用于增强技术制造能力和增加服务产品,包括添加冻干、细胞毒性处理技术及大/小规模容量等,另25%投资用于实施跟踪系统、QC自动化等的非制造领域。2016年,在跨国CMO企业中,DSM研发费用高达3.25亿美元,Lonza投入8232.77万美元,而2017年相继退市并被收购的Patheon和AMRI研发投入明显滞后,其中Patheon2016年的研发投入仅有210万美元,可见,在技术驱动的医药领域,企业发展与研发投入联动强劲。并购整合是CMO企业实现制造能力广深化的重要途径。2017年,医药外包领域有67笔整合交易,高于2016年的42笔,其中,CMO领域仅有16项,家族式企业、欧美CMO领域高退出壁垒及CMO业务非核心地位是行业整合的阻碍;然而,Pharma指出目前行业并购整合增速较快,制药外包部门并购整合交易总额已从2016年的314亿美元骤升至2017年549亿美元,主要得益于领军企业及其私募股权支持者(egDPx、Patheon、ICIG)推动。▌生物药物CMO或成行业主要驱动力高技术难度的生物药企对CMO服务的需求更加强烈。在生物制剂早期阶段,鲜少出现CMO合同制造,主要归咎于监管限制和技术不成熟,直到1997年,FDA的现代化法案(FDAMA)放宽限制,CMO才在生物药物领域寻得生存空间。相比于小分子化药,生物制剂分子结构复杂、研制标准严苛、临床试验成本巨大、配方分析技术难度升级、前期固资投入门槛高,制药企业难以完全掌控生物制剂开发过程中的全部技能和风险,特别是在商业化阶段,因此越来越多的生物制药企业转向外包。HighTechBusinessDecision针对3000名生物制药受访者调研,70%的生物制药企业表示将在未来五年内继续加深与CMO企业合作。生物药物是“重磅炸弹”的主要孵化领域,专利到期后将为生物药物CMO行业带来重大利好。自1982年世界首个生物药“胰岛素”问世以来,生物医药由于在重大疾病领域的革命性治疗效果,迅速发展,成为“重磅炸弹”的孵化基地,目前,生物药物重点研究领域包括抗体偶联药物、双特异性单抗及免疫肿瘤学。2017年,全球TOP10畅销药中80%为生物制剂,预期2022年Top100中生物制剂将由2008年30%增至52%,专利到期后庞大的市场空间为生物药物CMO的快速发展带来重大利好。预期全球生物制剂将以9.7%的增速发展,2021年达到3501亿美元,带动生物药物CMO快速发展。近年来,全球生物制剂市场发展迅速,2017年市场规模已由2012年的1642亿美元增至2422亿美元,复合增速(7.7%)远超医药市场整体水平(4.7%),预计将以9.7%的增速继续增长,2021年将达3501亿美元市场规模。至今有超过700款生物制剂上市,仅18家领先药企便有超900种生物制剂在研,2017年生物制剂在研新药占比已达到37.8%,全球生物制剂研发投入复合增速(10%)远高于医药整体研投增速(3.94%)。2018年,化药领域的新药临床申请为5397项,2012-2018年复合增速仅为0.37%,而生物药物临床申请为1804项,相比于2012年的824项,复合增速高达13.96%。预期全球生物药物CMO市场将保持18.9%的增速水平,2020年将达到190亿美元市场规模。据前瞻产业研究院统计,2017年全球生物CMO市场规模达到113亿美元,预期将以18.9%的增速上涨至2020年的190亿美元。众多利好因素助推CMO市场向我国转移我国CMO服务成本仅为欧美市场的25%-30%,叠加逐渐完善的知识产权制度、cGMP原料药供应体系以及药品上市许可持有人制度(MAH)、一致性评价、审评审批加速等政策利好释放,我国CMO行业具备长足发展契机,预期2021年,我国CMO行业市场规模将达626亿元,增速(18.3%)高于全球平均水平(13.03%)。生物药物CMO或成行业主要驱动力相比于小分子药物,生物药物由于结构复杂、研制标准严苛、前期固资投入高等特点更适用于CMO服务,2017年,全球生物CMO市场规模113亿美元,预期将以18.9%的增速上涨至2020年的190亿美元,其中,我国生物药物CMO更是呈现爆发式增长态势(34.63%),未来生物药物CMO可能成为行业发展的主要动力。随着CMO市场的蓬勃发展和市场需求的迭代扩增,拥有领先技术开发优化能力、产业链纵向延伸的创新型服务企业将赢得未来。报告来源:(渤海证券: 赵波、陈晨)

绊脚石

半导体行业深度报告:MOSFET行业研究

(报告出品方/作者:方正证券,陈杭)一、核心观点MOSFET国内外差距缩小,国产厂商有望承接市场份额。MOSFET升级之路包括制程缩小、 技术变化、工艺进步。 MOSFET在工艺线宽、器件结构、生产工艺know-how三个层面的技术发化放缓,随着 国内企业在产线建设、产品开发方面速度加快,国内外差距将明显缩窄。另一方面国外厂商逐步退出中低端市场,国内企业有机会承接市场份额。MOSFET价格上涨,产业链相关公司受益。全球半导体自20Q3末开始进入被动补库存阶段,全球开始恐慌性缺货,并带来涨价预期,与16Q3~18Q1的全球半导体景气周期以存储涨价为主导不同,本轮 20Q4~22Q1是以功率/8寸片涨价拉动到全产业链涨价。“5G+汽车电子”推动MOSFET下游需求。MOSFET是最基础的电子器件,具有高频、电压驱动、抗击穿性好等特点,应用范围覆盖电源、变频器、CPU及显卡、通讯、汽车电子等多个领域。5G主要给MOSFET带来基站电源、快充等新增需求。汽车电动化背景下,燃油车转向电动车,功率半导体以及 MOSFET用量剧增。二、功率MOS,驱动世界1、MOSFET概况根据Omdia数据,全球功率器件总市场约为463亿美元,其中分立MOSFET占比约为18%,市场空间约为83.34亿美元,MOSFET模组约占1%。全球功率MOSFET欧系厂商占主导。2019年英飞凌在全球功率MOSFET占比达到25%,安森美排名第二,占比12.80%。功率MOSFET器件工作速度快,故障率低 ,开关损耗小 ,扩展性好。适合低压、大电流的环境,要求的工作频率高于其他功率器件 。应用范围覆盖电源、发频器、CPU及显卡、通讯、汽车电子等多个领域。2、MOSFET:IDM模式占据主流MOSFET的差异化主要来源于三个方面,一是基于系统 know-how理解的设计能力。二是前段制程的差异,即晶圆制造环节的工艺水平差异。三是后段制程的差异,即芯片封装工艺水平的差异。 数字逻辑芯片产品的价值链构成更长,设计软件、IP、EDA、know-how、前段晶圆制造能力、 前段封装能力共同 创造了芯片的附加值。由亍价值链较长,逻辑芯片产业链出现了产业分工, Fabless+Foundry模式渐渐替代传统的IDM模式。但是在功率半导体领域,价值链较短,前段晶圆制造能力和后端封装能力是构成产品附加值的核心,国际一线企业大多数采用IDM模式。MOSFET以及功率半导体采用IDM模式更具竞争力。一是Fabless企业不掌握晶圆生产能 力,在行业供需紧张时,难以拿到稳定的晶圆产能配额。二是 IDM企业设计部门在晶圆生产 阶段就能够开始调试参数、迭代工艺技术。3、MOS升级之路:制程缩小+技术变化+工艺进步 +第三代半导体制程缩小:MOSFET的生产工艺在1976-2000年左右跟随摩尔定律不断缩小制程线宽。生产工艺制程从早期的 10微米制程迭代至 0.15-0.35微米制程。技术变化:MOSFET经历了3次器件结构上的技术革新:沟槽型、超级结、Insulated Field Plates。每一次 器件结构的变化,在某些单项技术指标上产品性能得到飞跃,大幅拓宽产品的应用领域。工艺进步: 在同一个器件结构下,通过 对生产工艺进行调整,产品 FOM性能变得小幅改善。材料迭代:SiC、GaN半导体功率器件。4、MOSFET与BJT区别MOSFET是电压驱动, 双极型晶体管(BJT)是电流驱动。 (1)只容许从信号源取少量电流的情况下,选用MOS管;在信号电压较低,有容许从信号源取较多电流的条件下,选用三极管。( 2)MOS管是单极性 器件(靠一种多数载流子导电),三极管是双极性器件(既有多数载流子,也要少数载流子导电)。( 3) 有些MOS管的源极和漏极可以互换运用,栅极也可正可负,灵活性比三极管好。(4)MOS管应用普遍, 可以在很小电流和很低电压下工作。(5)MOS管输入阻抗大,低噪声, MOS管较贵,三极管的损耗大。 (6)MOS管常用来作为电源开关,以及大电流开关电路、高频高速电路中,三极管常用来数字电路开关 控制。5、MOSFET与IGBT区别IGBT芯片=MOSFET+BJT。IGBT(绝缘栅双极型晶体管)是由BJT(双极型三极管)和 MOSFET(绝缘栅型场效管)组成的复合功率半导体,兼备了双极型晶体管的高耐压和 MOSFET输入抗阻高的特性,因此IGBT适用于高电压、大电流场合。二、5G+汽车电动化,功率 MOS下游需求旺盛1、通信:5G带来基站MOSFET需求根据英飞凌,5G基站采用的MOSFET等功率半导体用量是4G LTE基站的4倍以上。其中主要驱动力来自于Massive MIMO射频天线、小基站、雾运算的需求提升。5G基站天线集成无源、有源设备。4G和5G基站之间最大的区别是天线设计的改变。4G系统的天线单元是完全无源的,意味它只能接收和传输信号,不进行任何处理。无线电遥控装置 (RRU)负责信号处理。为了提高5G天线的性能,满足不同频谱的需求,天线中加入了大量的MIMO。由于集成了一个无源天线和一个 RRU,5G基站天线的基本架构因此改变,这也使得5G AAU天线成为一个集成了无源和有源组件的射频设备。宏基站、小基站数量上升。根据赛迪咨询数据,中国宏基站数量将在2023年达到100万个,小基站也受 5G需求推动。根据EET的数据,5G基站功率比4G基站高出4700W,增长约67%。由于 5G基站需要采用Massive MIMO等技术,5G基站的AAU输出功率由 4G的40W~80W上升到200W甚至更高,同时由于处理的数据 量大幅度增加,BBU的功率也大幅度提升。2、快充:用户需求催生快充需求手机使用时间提升。根据Statista数据,2020年全球每人一天使用手机上网的时间达到了143分钟,2021 年将达到155分钟。手机使用时间的增加将会增加手机电池的消耗。手机硬件更新迭代,耗电量提升。(1)120Hz高刷新率。120Hz逐渐成为了安卓旗舰机的标配。提高屏 幕的刷新率将会使使用者拥有更高的流畅感。(2)5G射频元器件数量增多。5G手机由于通信信号频段需求,功率放大器、双工器、LNA、滤波器数量都会高于4G手机。射频元器件数量增多也带来了通信中电量消耗的增多。(3)高性能CPU带来耗电量提升。小体积、高开关速度、低成本、高集中度, GaN-MOS逐步替代硅基MOSFET。随着人们 对充电效率的要求逐步提高,手机充电出现了 “快充”模式,即通过提高电压来达到高电流 高功率充电,但高电压存在安全隐患,需要添加同步整流的MOS管来调整;后来出现较为安全的“闪充”模式,即通过低电压高电流来实现高速充电,这对同步整流MOS管的要求更 高,目前较为普遍的是 GaN-mos管,它可以实现发热少、体积小的目的。3、功率器件是电动车之心根据富士电机资料,汽车电子的核心是MOSFET和IGBT,无论是在引擎、或者驱动系统中的变速箱控制和制动、转向控制中 还是在车身中,都离不开 MOSFET。在传统汽车中的助力转向、辅助刹车以及座椅等控制系统等,都需要加上电机,所以传 统汽车的内置电机数量迅速增长,带动了 MOSFET的市场增长。新能源汽车中,除了传统汽车用到的半导体需求之外,还包 括BMS、EPS、车身控制模块网关 ECU、ADAS等。4、新国标开启电动两轮车换车周期新国标开启电动两轮车 换车周期。新国标《电动自行车安全技术规范》( GB17761-2018) 亍 2018年5月15日颁布,2019年4月15日实施。新国标后,超标车替换将开启换车周期。其中主要沿海省份大城市换车截至日期集中在2021年底,内地二线城市集中在2022、2023年, 届时将迎来一轮密集的换车高峰。共享电单车、外卖配送需求提升推动电动两轮车放量。 除新国标带来的换车需求外,共享电单车直接驱动电动两轮车增长。外卖配送由于外卖员高频使用电动两轮车,因此外卖配送将会驱动电动两轮车的替代需求增长。MOSFET是控制器的核心。电动两轮车的控制器主要用来控制电动车的启动、运行、进退、 速度以及其他的电子器件核心。MOS管则是电动车控制器的核心结构。三、MOSFET相关企业分析(详见报告原文)报告节选:(报告观点属于原作者,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)精选报告来源:【未来智库官网】。

陈确

中国半导体设备行业市场研究报告

第一章:半导体设备行业概述1.半导体设备简介:半导体设备,即在芯片制造和封测流程中应用到的设备,广义上也包括生产半导体原材料所需的机器设备。在整个芯片制造和封测过程中,会经过上千道加工工序,涉及到的设备种类大体有九大类,细分又可以划出百种不同的机台,占比较大市场份额的主要有:光刻机、刻蚀机、薄膜沉积设备、离子注入机、测试机、分选机、探针台等。2.半导体设备是半导体行业基石:半导体设备总市值几百亿美元,支撑着全球上万亿的电子软硬件大生态,设备对整个半导体行业有着放大和支撑作用,其确立了整个半导体产业可达到的硬性尺寸标准边际值。因此,半导体设备是半导体制造的基石。3.半导体设备发展驱动因素导体行业持续增长:作为半导体产业的发动机,半导体设备是半导体技术迭代的基石。近年来,半导体行业政策红利不断,随着物联网、可穿戴设备、5G等下游产业的进一步兴起,半导体行业迎来快速发展阶段。2010-2019年,中国集成电路销售额持续以两位数的增速增长,2019年达到7562.3亿元,同比增长15.8%;2020年上半年,销售额为3539亿元,尽管受到疫情的影响,但仍同比增长16.1%。摩尔定律推动行业技术发展:根据摩尔定律演进,每隔18-24个月芯片性能将提升一倍。1971年英特尔发布的第一个处理器4004,就采用10微米工艺生产,仅包含2300多个晶体管。随后,晶体管的制程节点以0.7倍的速度递减,90nm、65nm、45nm、32nm、22nm、16nm、10nm、7nm等等相继被成功研制出来,目前正向5nm、3nm、2nm突破。对半导体设备来说,根据半导体行业内“一代设备,一代工艺,一代产品”的经验,半导体设备要超前半导体产品制造开发新一代产品每更新一代工艺制程,则需更新一代更为先进的制程设备。产业政策有效扶植推进:从政策环境上来看,随着半导体产业不断深化,我国对于半导体设备行业愈加重视。其主要表现在对于整个IC产业链企业的政策优待以及对于半导体设备行业的相关规划与推动。其中较为突出的是《极大规模集成电路制造装备及成套工艺》项目(02专项),其以专项的形式组织了一批国内半导体设备公司进行了一系列重点工艺和技术的攻关,有效促进了我国半导体设备行业的发展,使得我国半导体设备行业涌现出了一批拥有国际竞争力的龙头企业。资本给产业带来新机遇:2014年6月国务院发布了《国家集成电路产业发展推进纲要》,奠定未来集成电路的战略发展方向,同时提出要设立国家产业投资基金的重要举措。同年9月,在工信部和财政部的指导下,国开金融、华芯投资等共同签署了《国家集成电路产业投资基金股份有限公司发起人协议》和《国家集成电路产业投资基金股份有限公司章程》,大基金正式设立(一期)。大基金一期共募得普通股987.2亿元,同时发行优先股400亿元,基金总规模达到1387.2亿元,以IC制造为主。2019年10月22日大基金二期正式成立,总规模高达2041.5亿元,于2020年3月开始进行实质投资,半导体设备、半导体材料等大基金一期投入相对较少的产业迎来发展机遇。第二章:半导体设备行业发展现状1.全球半导体设备行业发展全球半导体行业周期明显 新一轮上升周期来临:从全球半导体发展情况来看,受宏观经济变化及技术革新影响,半导体行业存在周期性。2017-2019年,全球半导体行业来到了下滑周期。2019年,全球固态存储及智能手机、PC需求增长放缓,全球贸易摩擦升温,导致全球半导体需求市场下滑,全年销售额为4121亿美元,同比下降12.1%。进入2020年,有5G商用化、数据中心、物联网、智慧城市、汽车电子等一系列新技术及市场需求做驱动,将给予半导体行业新的动能。全球半导体设备行业销售额出现下滑:根据国际半导体产业协会SEMI统计数据显示,近年来全球半导体设备销售额呈波动态势,2019年为597.5亿美元,比2018年的645.3亿美元的历史高点下降了7.4%。2020年一季度,全球半导体设备销售额为155.7亿美元,比2019年第四季度减少13%,但与2019年一季度相比,增长了13%。前道设备占据主要市场份额:在一个新晶圆投资建设中,设备投资一般占70-80%。按工艺流程分类,在新晶圆的设备投资中,晶圆加工的前道设备占据主要的市场份额,约85%;封测设备占据约15%的比重,其中测试设备9%,封装设备6%。全球半导体设备产业主要集中在中国台湾及大陆地区:从地区分布来看,2019年中国台湾是半导体设备的最大市场,销售额增长了68%,达到171.2亿美元,占全球市场的比重为28.65%。中国大陆则以134.5亿美元的销售额保持其第二大设备市场的地位,占比为22.51%。排名第三的是韩国,销售额为99.7亿美元,同比下降44%,占比为16.69%。尽管日本,欧洲和世界其他地区的新设备市场萎缩,但北美设备销售额在2019年跃升了40%,达到81.5亿美元,占比升到13.64%,这是该地区连续第三年增长。日美荷品牌占据全球前十大设备制造商地位:目前全球半导体设备市场集中度较高,以美国、荷兰、日本为代表的TOP10企业垄断了全球半导体设备市场90%以上的份额。美国著名设备公司应用材料、泛林半导体、泰瑞达、科天半导体合计占据整个设备市场40%以上份额,而且均处于薄膜、刻蚀、前后道检测三大细分领域的绝对龙头地位。技术领先和近半的市场占有率,任何半导体制造企业都很难完全脱离美国半导体设备供应体系。巨头瓜分细分市场:从半导体设备的各细分行业来看,依旧是被TOP10供应商垄断,应用材料、ASML、东京电子(TEL)头部三家公司合计占比高达60%-90%。其中,应用材料、TEL等企业横跨多细分领域,成为航母级龙头企业。2.中国半导体设备行业发展现状行业市场规模持续增长。根据SEMI数据显示,2013-2019年中国大陆半导体设备市场规模呈现逐年增长态势,增速波动变化。2019年行业实现市场规模134.5亿美元,同比增长2.6%,增速较2018年有所回落。2020年一季度行业实现规模35亿元,较2019年同期增长48%,可见我国半导体设备在2020年初的新冠肺炎事件中受到的影响并不显著。同时,中国大陆半导体设备市场规模占全球市场规模的比重一直在增长,2019年中国大陆在全球市场占比实现22.5%,较2018年增长了2.3个百分点。国产化率仍处于较低水平:虽然中国半导体专用设备企业销售规模不断增长,但整体国产率还处于较低的水平,目前中国半导体专用设备仍主要依赖进口。根据中国本土主要晶圆厂设备采购情况的统计数据,目前中国主要本土晶圆厂设备的国产化情况如下图。前道制程设备占主导地位:从产品细分结构来看,半导体设备主要分为前道制造设备以及后道封装测试设备。根据SEMI数据,2018年国内半导体设备主要集中在前道制程设备,其比重为78%,其中以光刻机、刻蚀机和薄膜沉积设备为主。此外,测试设备在半导体设备的占比为10%,封装设备在半导体设备中的比重约为7%。国内企业规模整体偏小:据中国电子专用设备工业协会的数据显示,2019年中国半导体设备TOP10企业共完成销售收入143.43亿元。2019年中国半导体设备制造商销售收入排列首位的是浙江晶盛机电股份有限公司,其2019年半导体设备销售收入达到28.86亿元,其次为北方华创科技集团股份有限公司,销售收入为28.42亿元。但对标全球半导体设备企业的销售收入来看,我国半导体设备行业内企业规模仍处于较低水平,行业设备需求多依赖于国际品牌。资本市场处于初级阶段:目前,我国半导体设备行业仍在追赶阶段,多数企业成立时间较短,从融资情况来看,2020年我国半导体设备行业企业的融资轮次多处于A轮以及战略投资。可见行业的融资情况仍处于初级阶段,从行业发展的情况来看,未来行业或将吸收更多的资金。第三章:半导体设备行业细分市场分析1.光刻设备光刻设备简介:光刻工艺是半导体制造中最为重要的工艺步骤之一。光刻的本质是把临时电路结构复制到硅片上,这些结构首先以图形形式制作在掩膜版上;光源透过掩膜版将图形转移到硅片表面的光敏薄膜上。光刻工艺主要流程有涂胶、软烘、对准曝光、显影、坚膜烘焙、刻蚀、去除清洗等一系列步骤。 所涉及到的主要设备有光刻、涂布、曝光显影、量测和清洗设备,其中价值量最大且技术壁垒最高的部分是光刻机。光刻机发展历程分析:光刻机发展至今,已经历了5代产品的迭代。第一二代均为接触接近式光刻机,使用光源分别为436nm的g-line和365nm的i-line;第三代为扫描投影式光刻机,光源改进为248nm的KrF激光,实现了跨越式发展,将最小工艺推进至180-130nm;第四代为浸没步进式投影式光刻机,是最具代表性的光刻机产品,1986年由ASML首先推出,采用193nmArF激光光源;第五代为EUV光刻机,采用极紫外光光源,是未来光刻机技术发展的主要方向。2010年ASML推出第一台EUV光刻机NXE:3100, 目前其是全世界唯一一家能够设计和制造EUV设备的厂商。全球光刻机需求量在300台左右:目前全球光刻机被ASML、Canon和Nikon三家供应商包揽。从行业需求来看,全球每年光刻机产出量300-400台,2019年,全球TOP3企业光刻机合计销售量354台,较2018年下降了3.8%。在2019年的354台光刻机设备中,ASML贡献了229台,占据着超60%的市场份额。2020年第一季度,全球光刻机top3企业销售量实现85台。ArF、i-line光刻机是主流:近年来,市场上销售的光刻机主要为EUV光刻机、ArF lm光刻机、ArF Dry光刻机、KrF光刻机和i-line光刻机。从2019年这五类光刻机的销量情况来看,ArF光刻机销量最高,达122台,其中ArF lm光刻机89台, ArF Dry光刻机33台。在这122台中,ASML贡献了大部分的份额。其次为i-line光刻机,销量为116台。光刻机国产化进行时:从中国市场来看,上海微电子装备有限公司(SMEE)是我国国内唯一能够做光刻机的企业。上海微电已经量产的光刻机中,性能最好的是SSA600/200工艺,能够达到90nm的制程工艺,而最新的荷兰ASML公司所生产的N+1光刻机是采用最新的制程,能够达到7nm的程度。因此,国内晶圆厂所需要的高端光刻机完全依赖进口,国产化脚步有待加快。此外,从光刻机工作台、涂布显影、去胶/清洗等其他光刻设备来看,我国在研企业还有华卓精科、芯源微、屹唐半导体等。2.刻蚀设备刻蚀设备简介:刻蚀是利用化学或者物理的方法将晶圆表面附着的不必要的材质进行去除的过程。按照刻蚀工艺划分,刻蚀其主要分为干法刻蚀以及湿法刻蚀,干法刻蚀主要利用反应气体与等离子体进行刻蚀,利用等离子体与表面薄膜反应,形成挥发性物质,或者直接轰击薄膜表面市值被腐蚀的工艺。湿法刻蚀工艺主要是将刻蚀材料浸泡在腐蚀液内进行腐蚀,该刻蚀方法会导致材料的横向纵向同时腐蚀,会导致一定的线宽损失。目前来看,干法刻蚀在半导体刻蚀中占据绝对主流低位,市场占比超过90%。全球刻蚀设备市场规模至2025年有望达到155亿美元:近年来,全球刻蚀设备市场快速发展。2013年,全球刻蚀设备市场规模约为40亿美元,随着闪存技术突破,存储市场拉动刻蚀设备需求明显增大,至2019年市场规模突破百亿美元,达到115亿美元。 SEMI预测2025年全球刻蚀设备市场空间达到155亿美元,年复合增速约为12%,市场空间增量主要来自于存储制造对刻蚀设备的需求激增。三大巨头垄断市场:从刻蚀设备主要品牌来看,目前该领域被泛林半导体、TEL、应用材料三家海外巨头所垄断。2019年,三家企业合计占全球刻蚀设备市场90%左右,其中泛林半导体又以50%的市场份额遥遥领先。工艺升级带动刻蚀机用量提升:根据中微公司披露的高阶制程刻蚀工艺来看,由于光刻机在20nm以下光刻步骤收到光波长度的限制,因此无法直接进行光刻与刻蚀步骤,而是通过多次光刻、刻蚀生产出符合人们要求的更微小的结构。目前普遍采用多重模板工艺原理, 即通过多次沉积、刻蚀等工艺,实现10nm线宽的制程。根据相关数据,14nm制程所需使用的刻蚀步骤达到64次,较28nm提升60%;7nm制程所需刻蚀步骤更是高达140次,较14nm提升118%,工艺升级持续推动刻蚀机用量提升。有望率先完成国产替代:从国内市场来看,刻蚀机尤其是介质刻蚀机,是我国最具优势的半导体设备领域,也是国产替代占比最高的重要半导体设备之一。目前我国主流设备中,去胶设备、刻蚀设备、热处理设备、清洗设备等的国产化率均已经达到20%以上。而这之中市场规模最大的则要数刻蚀设备。我国目前在刻蚀设备商代表公司为中微公司、北方华创以及屹唐半导体。中微与北方作为我国两家设备龙头企业,偏重领域有一定区别。3.薄膜沉积设备薄膜沉积设备简介:薄膜的沉积,是一连串涉及原子的吸附、吸附原子在表面扩散及在适当的位置下聚结,以渐渐形成薄膜并成长的过程。薄膜沉积工艺主要有原子层沉积(ALD)、物理式真空镀膜(PVD)、化学式真空镀膜(CVD)三种工艺。全球薄膜沉积设备市场规模至2025年有望达到340亿美元:根据Maximize Market Research数据统计,全球半导体薄膜沉积市场2017年市场空间约为125亿美元,预计到2025年将达到340亿美元,期间以年复合13.33%的速度增长。其中市场将以存储、AMOLED显示屏以及太阳能电站等新兴应用需求的增加为驱动薄膜沉积市场增长的核心动力。CVD设备占据过半市场份额:从半导体薄膜沉积设备主要类型来看,CVD设备占据着57%的薄膜沉积设备市场,领先于其他类型设备;其次是PVD,占比为25%;ALD及其他镀膜设备占据着18%的市场份额。薄膜沉积设备品牌竞争格局分析:从全球市场份额来看,ALD设备龙头TEL和ASM分别占据了31%和29%的市场份额,剩下40%的份额由其他厂商占据;而应用材料则基本垄断了PVD市场,占85%的比重,处于绝对龙头地位;在CVD市场中,应用材料全球占比约30%,连同泛林半导体的21%和TEL的19%,三大厂商占据了全球70%的市场份额。国产薄膜沉积设备取得重大进展:从国内市场看,中国薄膜沉积设备龙头有北方华创和沈阳拓荆。其中,北方华创产品线覆盖CVD、PVD和ALD三类;沈阳拓荆主攻CVD和ALD,目前技术储备均达到28/14nm节点。近年来两家公司分别在技术储备以及客户认证方面取得良好进展。2020年4月7日,北方华创宣布,其THEORISSN302D型12英寸氮化硅沉积设备进入国内集成电路制造龙头企业。该设备的交付,意味着国产立式LPCVD设备在先进集成电路制造领域的应用拓展上实现重大进展。4.清洗设备清洗设备分类——以湿法清洗为主:半导体清洗设备针对不同的工艺需求,对晶圆表面进行无损伤清洗以去除半导体制造过程中的颗粒、自然氧化层、金属污染、有机物、牺牲层、抛光残留物等杂质。按照清洗原理来分,清洗工艺可分为干法清洗和湿法清洗。在实际生产过程中一般将湿法和干法两种方法结合使用,目前90%以上的清洗步骤以湿法工艺为主。在湿法清洗工艺路线下,目前主流的清洗设备主要包括单片清洗设备、槽式清洗设备、组合式清洗设备和批式旋转喷淋清洗设备等,其中以单片清洗设备为主流。——清洗步骤贯穿全产业链:清洗设备直接影响集成电路的成品率,是贯穿半导体产业链的重要环节,在单晶硅片制造、光刻、刻蚀、沉积等关键制程及封装工艺中均为必要环节,约占所有芯片制造工序步骤30%以上,且随着节点的推进,清洗工序的数量和重要性会继续提升,清洗设备的需求量也将相应增加。清洗设备发展现状——行业规模波动幅度较大:根据Gartner统计数据,2018年全球半导体清洗设备市场规模为34.17亿美元,2019年和2020年受全球半导体行业景气度下行的影响,有所下降,分别为30.49亿美元和25.39亿美元,预计2021年随着全球半导体行业复苏,全球半导体清洗设备市场将呈逐年增长的趋势,2024 年预计全球半导体清洗设备行业将达到31.93亿美元。——马太效应明显 行业集中度较高:目前,全球半导体清洗设备市场主要由Screen(日本迪恩士)、TEL(日本东京电子)、Lam Research(美国拉姆研究)和SEMES(韩国)和拉姆研究等日美韩企业瓜分。根据Gartner数据显示,2018年全球排名前四的企业合计占据约98%的市场份额,行业马太效应显著,市场高度集中;其中日本厂商迪恩士以市占率45.1%处于绝对领先地位,而国内清洗设备龙头盛美半导体市占率仅为2.3%。——国内生产企业屈指可数:目前,中国大陆能提供半导体清洗设备的企业较少,主要包括盛美股份、北方华创(002371)、芯源微(688037)以及至纯科技(603690)四家公司。此外,据中国国际招标网统计,在芯片和集成电路制造厂商长江存储、华虹无锡、上海华力二期项目共累计累计采购的200多台清洗设备中,按中标数量对供应商排序,依次是DNS、盛美股份、LAM、TEL以及北方华创,所占份额依次是48%、20.5%、20%、6%和1%,盛美股份在国产清洗设备供应商中排名第一。可见,盛美股份是国内半导体清洗设备行业龙头企业,未来其市场发展空间较大,有望打破外企垄断,扩大市场份额。5.封装设备封装设备分类:典型的半导体封装工艺流程为:划片、装片、键合、塑封、去飞边、电镀、打印 、切筋和成型 、外观检查、 成品测试 、包装出货。与封装流程对应的,整个封装设备包括切割减薄设备、划片机、贴片机、固化设备、引线焊接/键合设备、塑封及切筋设备等。发展现状——行业规模占全球比重持续上涨:据SEMI数据显示,2018年全球封装设备市场规模约为42亿美元,另外根据VLSI数据,半导体设备中封装设备约占7%。假设该占比较稳定,结合SEMI最新数据,可估算得到2019全球封测设备市场空间约为41.86亿美元,2020年有望达到42.56亿美元。同时,根据SEMI数据,国内封装设备在半导体设备中的比重同样约为7%,2019年中国大陆半导体封装设备市场规模约为9.4亿美元,预计到2020年中国大陆半导体封测设备规模约为10.4 亿美元。从中国在全球的比重来看,2018-2020年我国半导体设备规模占全球比重不断上升,2019年约为22.5%。结合封测设备细分产品结构来看,根据VLSI数据,2018年全球半导体封装设备中的贴片机、划片机/检测设备、引线焊接设备、塑封/切筋成型设备等占比较大,分别约为 30%、28%、23%、18%。——市场仍以国际企业占据:目前,在全球封装设备领域的代表性企业包括ASM Pacific、K&S、Shinkawa、Besi等,同时,我国半导体封装设备市场同样被这些国际企业占据,且国产化程度很低。6.测试设备设备分类——测试机比重居于首位:测试设备贯穿于集成电路生产制造流程(包括IC设计、制造以及封测)。晶圆在封装前和封装过程中需进行多次多种测试,如封装前的晶圆测试(WAT测试)、在封测过程中需进行CP测试、封装完成后需进行FT测试等,所涉及设备包括探针台、测试机、分选机等。——测试机比重居于首位:从产品的细分结构来看,根据SEMI数据,2018年我国半导体测试设备中测试机的占比达到63.1%,居于首位;其次分选机和探针台分别占比17.4%和15.2%。值得注意的是,在测试机的细分产品中,存储测试机和SOC测试机占据主要份额,其占比分别达到43.8%和23.5%。——行业规模保持增长:根据SEMI数据,国内测试设备在半导体设备行业的的比重约为10%,据此进行测算得到,2019年中国大陆半导体测试设备市场规模约为13.11亿美元,并预计到2020年中国大陆半导体测试设备规模约为15亿美元。同时从全球角度来看,据Gartner数据,2016-2018年全球半导体测试设备的市场规模呈逐年增长态势,2018年行业规模为56.33亿美元,前瞻根据市场增速进行估算,2019年全球半导体测试设备规模约为65亿美元。——全球企业集中度较高:从企业竞争格局来看,目前全球半导体测试设备产业主要呈现美商Teradyne、日商Advantest、TEL等国际企业垄断的局面;而中国集成电路测试设备市场份额同样被国外企业瓜分,本土企业虽然与国际龙头相比在规模和技术方面仍然存在一定差距,但是近几年进步较大,市场份额逐步提升,相继涌现出华峰测控、长川科技等企业。第四章:半导体设备行业发展趋势分析半导体设备行业发展痛点:融资环境仍不成熟,高端技术和人才的缺乏,国产核心零部件配套能力薄弱,国外出口限制。半导体设备行业发展趋势:设备将向高精度化与高集成化方向发展,各类技术等级设备并存发展,国产化进程加快。半导体设备行业发展前景:随着国际产能不断向我国大陆地区转移,英特尔(Intel)、三星(Samsung)等国际大厂陆续在我国大陆地区投资建厂,同时在集成电路产业投资基金的引导下,我国大陆集成电路生产线建设热情高涨,我国大陆地区对半导体设备的需求巨大。结合全球半导体设备发展趋势以及我国半导体设备国产替代以及下游需求旺盛的多重作用,未来几年,我国半导体设备行业仍将保持高速增长,预计2020-2025年,我国半导体设备行业市场规模将保持在15%左右的复合增长率稳步提升,到2025年,全国半导体设备市场规模将达到298亿美元。报告节选:(报告观点属于原作者,仅供参考。报告来源:前瞻产业研究院)

数肇

报告:制备和工艺色谱的市场规模将于2026年达到99.7亿美元

根据Grand View Research的最新报告,到2026年,全球制备和工艺色谱市场规模预计将达到99.7亿美元,从2019年到2026年的复合年增长率为6.7%。市场的主要驱动力包括政府和公司的研发投资,食品和营养食品行业中色谱技术的日益普及以及对生物制药的需求不断增加。(美通社)来源: 同花顺金融研究中心

敲门

半导体高端制造专题报告:半导体封装基板行业深度研究

如需报告请登录【未来智库】。一、半导体封装基础1.1. 半导体制造工艺流程半导体制造的工艺过程由晶圆制造(Wafer Fabrication)、晶圆测试(wafer Probe/Sorting)、芯片封装(Assemble)、测试(Test)以及后期的成品(Finish Goods)入库所组成。半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电极等,开发材料的电子功能,以实现所要求的元器件特性。后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性,并便于与外电路联接。1.2. 微电子封装和封装工程1.2.1. 封装的基本定义和内涵封装(packaging,PKG):主要是在半导体制造的后道工程中完成的。即利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过塑性绝缘介质灌封固定,构成整体主体结构的工艺。封装工程:是封装与实装工程及基板技术的总和。即将半导体、电子元器件所具有的电子的、物理的功能,转变为适用于机器或系统的形式,并使之为人类社会服务的科学技术,统称为电子封装工程。封装一词用于电子工程的历史并不长。在真空电子管时代,将电子管等器件安装在管座上构成电路设备一般称为组装或装配,当时还没有封装这一概念。自从三极管、IC 等半导体元件的出现,改变了电子工程的历史。一方面,这些半导体元件细小柔嫩;另一方面,其性能又高,而且多功能、多规格。为了充分发挥其功能,需要补强、密封、扩大,以便与外电路实现可靠地电气联接,并得到有效地机械支撑、绝缘、信号传输等方面的保护作用。“封装”的概念正是在此基础上出现的。1.2.2. 封装的功能封装最基本的功能是保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(Metal Can)作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是, 随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。一般来说顾客所需要的并不是芯片,而是由芯片和 PKG 构成的半导体器件。PKG 是半导体器件的外缘,是芯片与实装基板间的界面。因此无论 PKG 的形式如何,封装最主要的功能应是芯片电气特性的保持功能。通常认为,半导体封装主要有电气特性的保持、芯片保护、应力缓和及尺寸调整配合四大功能,它的作用是实现和保持从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的 I/O 线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接。芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重,由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。1.2.3. 封装的范围1. 微电子封装的三个层次通常,从FAB 厂制造的晶圆开始,可以将电子封装,按照制造的时间先后顺序分为三个层次。2. 微电子封装工程和电子基板微电子封装是一个复杂的系统工程,类型多、范围广,涉及各种各样材料和工艺。可按几何维数将电子封装分解为简单的“点、线、面、体、块、板”等。电子基板是半导体芯片封装的载体,搭载电子元器件的支撑,构成电子电路的基盘,按其结构可分为普通基板、印制电路板、模块基板等几大类。其中 PCB 在原有双面板、多层板的基础上,近年来又出现积层(build-up) 多层板。模块基板是指新兴发展起来的可以搭载在 PCB 之上,以 BGA、CSP、TAB、MCM 为代表的封装基板(Package Substrate,简称 PKG 基板)。小到芯片、电子元器件,大到电路系统、电子设备整机,都离不开电子基板。近年来在电子基板中,高密度多层基板所占比例越来越大。微电子封装所涉及的各个方面几乎都是在基板上进行或与基板相关。在电子封装工程所涉及的四大基础技术,即薄厚膜技术、微互连技术、基板技术、封接与封装技术中,基板技术处于关键与核心地位。随着新型高密度封装形式的出现,电子封装的许多功能,如电气连接,物理保护,应力缓和,散热防潮,尺寸过渡,规格化、标准化等,正逐渐部分或全部的由封装基板来承担。微电子封装的范围涉及从半导体芯片到整机,在这些系统中,生产电子设备包括 6 个层次,也即装配的 6 个阶段。我们从电子封装工程的角度,按习惯一般称层次 1 为零级封装;层次 2 为一级封装;层次 3 为二级封装; 层次 4、5、6 为三级封装。3. 封装基板和封装分级从硅圆片制作开始,微电子封装可分为 0、1、2、3 四个等级,涉及上述六个层次,封装基板(PKG 基板或 Substrate)技术现涉及 1、2、3 三个等级和 2~5 的四个层次。封装基板主要研究前3个级别的半导体封装(1、2、3级封装),0级封装暂与封装基板无关,因此封装基板一般是指用于 1 级 2 级封装的基板材料,母板(或载板)、刚挠结合板等用于三级封装。1.2.4. 传统集成电路(IC)封装的主要生产过程IC 的封装工艺流程可分为晶元切割、晶元粘贴、金线键合、塑封、激光打印、切筋打弯、检验检测等步骤。1.3. 半导体封装技术和工艺1.3.1. 半导体封装技术1. 芯片封装的实质传统意义的芯片封装一般指安放集成电路芯片所用的封装壳体,它同时可包含将晶圆切片与不同类型的芯片管脚架及封装材料形成不同外形的封装体的过程。从物理层面看,它的基本作用为:为集成电路芯片提供稳定的安放环境,保护芯片不受外部恶劣条件(例如灰尘,水气)的影响。从电性层面看,芯片封装同时也是芯片与外界电路进行信息交互的链路,它需要在芯片与外界电路间建立低噪声、低延迟的信号回路。然而不论封装技术如何发展,归根到底,芯片封装技术都是采用某种连接方式把晶圆切片上的管脚与引线框架以及封装壳或者封装基板上的管脚相连构成芯片。而封装的本质就是规避外界负面因素对芯片内部电路的影响,同时将芯片与外部电路连接,当然也同样为了使芯片易于使用和运输。芯片封装技术越来越先进,管角间距越来越小,管脚密度却越来越高,芯片封装对温度变化的耐受性越来越好,可靠性越来越高。另外一个重要的指标就是看,芯片与封装面积的比例。此外,封装技术中的一个主要问题是芯片占用面积,即芯片占用的印刷电路板(PCB)的面积。从早期的 DIP 封装,当前主流的 CSP 封装,芯片与封装的面积比可达 1:1.14,已经十分接近 1:1 的理想值。而更先进 MCM 到SIP 封装,从平面堆叠到垂直堆叠,芯片与封装的面积相同的情况下进一步提高性能。2. 封装技术工艺发展历程半导体封装技术的发展历史可划分为三个阶段。在此背景下,焊球阵列封装(BGA)获得迅猛发展,并成为主流产品。BGA 按封装基板不同可分为塑料焊球阵列封装(PBGA),陶瓷焊球阵列封装(CBGA),载带焊球阵列封装(TBGA),带散热器焊球阵列封装(EBGA), 以及倒装芯片焊球阵列封装(FC-BGA)等。为适应手机、笔记本电脑等便携式电子产品小、轻、薄、低成本等需求, 在 BGA 的基础上又发展了芯片级封装(CSP); CSP 又包括引线框架型 CSP、柔性插入板 CSP、刚性插入板 CSP、园片级 CSP 等各种形式,目前处于快速发展阶段。同时,多芯片组件(MCM)和系统封装(Si P)也在蓬勃发展,这可能孕育着电子封装的下一场革命性变革。MCM 按照基板材料的不同分为多层陶瓷基板 MCM(MCM-C)、多层薄膜基板 MCM(MCM-D)、多层印制板 MCM(MCM- L)和厚薄膜混合基板 MCM(MCM-C/D)等多种形式。SIP 是为整机系统小型化的需要,提高半导体功能和密度而发展起来的。SIP 使用成熟的组装和互连技术,把各种集成电路如 CMOS 电路、Ga As 电路、Si Ge 电路或者光电子器件、MEMS 器件以及各类无源元件如电阻、电容、电感等集成到一个封装体内,实现整机系统的功能。目前,半导体封装处于第三阶段的成熟期与快速增长期,以 BGA/CSP 等主要封装形式开始进入规模化生产阶段。同时,以 SiP 和 MCM 为主要发展方向的第四次技术变革处于孕育阶段。3. 半导体封装材料半导体元件的封接或封装方式分为气密性封装和树脂封装两大类,气密性封装又可分为金属封装、陶瓷封装和玻璃封装。封接和封装的目的是与外部温度、湿度、气氛等环境隔绝,除了起保护和电气绝缘作用外,同时还起向外散热及应力缓和作用。一般来说,气密性封装可靠性高,但价格也高。目前由于封装技术及材料的改进,树脂封装已占绝对优势,但在有些特殊领域(军工、航空、航天、航海等),气密性封装是必不可少的。按封装材料可划分为:金属封装、陶瓷封装(C)、塑料封装(P)。采用前两种封装的半导体产品主要用于航天、航空及军事领域,而塑料封装的半导体产品在民用领域得到了广泛的应用。目前树脂封装已占世界集成电路封装市场的 98,97以上的半导体器件的封装都采用树脂封装,在消费类电路和器件领域基本上是树脂封装一统天下,而 90以上的塑封料是环氧树脂塑封料和环氧液体灌封料。4. 芯片电学(零级封装)互连在一级封装中,有个很重要的步骤就是将芯片和封装体(进行电学互连的 过程,通常称为芯片互连技术或者芯片组装。为了凸显其重要性,有些教 科书也将其列为零级封装。也就是将芯片上的焊盘或凸点与封装体通常是 引线框架用金属连接起来。在微电子封装中,半导体器件的失效约有一是由于芯片互连引起的,其中包括芯片互连处的引线的短路和开路等,所以芯片互连对器件的可靠性非常重要。常见的芯片电学互连有三种方式,分别是引线键合,载带自动焊和倒装焊。通常,TAB 和FC 虽然互连的电学性能要比好,但是都需要额外的设备。因此,对于 I/O 数目较少的芯片,TAB 和 FC 成本很高,另外,在 3D 封装中, 由于芯片堆叠,堆叠的芯片不能都倒扣在封装体上,只能通过 WB 与封装体之间进行互连。基于这些原因,到目前为止,WB 一直是芯片互连的主流技术, 在芯片电学互连中占据非常重要的地位。1.3.2. 半导体封装的典型封装工艺简介依据封装管脚的排布方式、芯片与 PCB 板连接方式以及发展的时间先后顺序, 半导体封装可划分为 PTH 封装(Pin-Through-Hole) 和 SMT 封装(Surface-Mount-Technology)二大类,即通常所称的插孔式(或通孔式) 和表面贴装式。1. 针脚插装技术(PTH)针脚插装封装,顾名思义即在芯片与目标板的连接过程中使用插装方式, 古老而经典 DIP 封装即属于该种封装形式。在早期集成电路中由于芯片集成度不高,芯片工作所需的输入/输出管脚数较少,所以多采用该种封装形式。DIP 封装有两种衍生封装形式,即为:SIP 和 ZIP,只是为适应不同的应用领域,对传统 DIP 封装在封装壳管脚排布和形状上略有改进。2. 表面贴装封装(SMT)PTH 封装在机械连接强度上的优势毋庸质疑,但同时也带来一些负面效应。PTH 封装中使用的贯通孔将大量占用 PCB 板有效布线面积,因此目前主流的 PCB 板设计中多使用表面贴片封装。表面贴片封装有很多种类,常用的封装形式有: 小型塑封晶体管(Small Outline Transistor,SOT) 小引出线封装(Small Outline Package,SOP) 四方扁平无引线封装(Quad Flat No-lead Package,QFN) 薄小缩小外形封装(Thin Small Shrink Outline Package,TSSOP) 方型扁平式封装(Quad Flat Package,QFP) 方形扁平无引脚封装(QFN)从 SOT 到 QFN,芯片封装壳支持的管脚数越来越多,芯片封装壳的管角间距越来越小。表面贴片封装方式的优点在于芯片封装的尺寸大大下降,芯片封装的管脚密度大大提升,与 PTH封装具有相同管脚数量时,表面贴片封装的封装尺寸将远小于 PTH封装。表面贴片封装只占用PCB板表层布线空间,在使用多层布线工艺时,封装占用的有效布线面积大大下降,可以大大提高 PCB 板布线密度和利用率。3.BGA封装伴随着芯片集成度不断提高,为使芯片实现更复杂的功能,芯片所需的输入/输出管脚数量也进一步提升,面对日趋增长的管脚数量和日趋下降的芯片封装尺寸,微电子封装提出了一种新的封装形式BGA封装。BGA 封装的底部按照矩阵方式制作引脚,引脚的形状为球形,在封装壳的正面装配芯片,有时也会将 BGA 芯片与球形管脚放在基板的同一侧。BGA 封装是大规模集成电路的一种常用封装形式。BGA 封装按照封装壳基板材质的不同,可分为三类:塑料 BGA、陶瓷 BGA、载带 BGA。BGA 封装具有以下共同特点:1) 芯片封装的失效率较低;2) 提升器件管脚数量与封装壳尺寸的比率,减小了基板面积;3) 管脚共面较好,减少管脚共面损害带来的焊接不良;4) BGA 引脚为焊料值球,不存在引脚变形问题;5) BGA 封装引脚较短,输入/输出信号链路大大缩短,减少了因管脚长度引入的电阻/电容/电感效应,改善了封装壳的寄生参数;6) BGA 球栅阵列与 PCB 板接触点较多,接触面积较大,有利于芯片散热,BGA 封装有利提高封装的封装密度。BGA 封装使用矩阵形式的管脚排列,相对于传统的贴片封装,在相同管脚数量下,BGA 封装的封装尺寸可以做的更小,同时也更节省 PCB 板的布线面积。4. 芯片级(CSP)封装技术1) CSP 定义根据 J-STD-012 标准的定义,CSP 是指封装尺不超过裸芯片 1.2 倍的一种先进的封装形式。一般认为 CSP 技术是在对现有的芯片封装技术,尤其是对成熟的 BGA 封装技术做进一步技术提升的过程中,不断将各种封装尺寸进一步小型化而产生的一种封装技术。CSP 技术可以确保超大规模集成电路在高性能、高可靠性的前提下,以最低廉的成本实现封装的尺寸最接近裸芯片尺寸。与 QFP 封装相比,CSP 封装尺寸小于管脚间距为 0.5mm 的 QFP 封装的 1/10;与 BGA 封装相比,CSP 封装尺寸约为 BGA 封装的 1/3。当封装尺寸固定时,若想进一步提升管脚数,则需缩小管脚间距。受制于现有工艺,不同封装形式存在工艺极限值。如 BGA 封装矩阵式值球最高可达 1000 个,但 CSP 封装可支持超出 2000 的管脚。CSP 的主要结构有内芯芯片、互连层、焊球(或凸点、焊柱)、保护层等几大部分,芯片与封装壳是在互连层实现机械连接和电性连接。其中,互连层是通过载带自动焊接或引线键合、倒装芯片等方法,来实现芯片与焊球之间的内部连接,是 CSP 关键组成部分。目前有多种符合 CSP 定义的封装结构形式,其特点有:1) CSP 的芯片面积与封装面积之比与 1:1 的理想状况非常接近,绝对尺寸为 32mm2,相当于 BGA 的三分之一和 TSOP 的六分之一,即 CSP 可将内存容量提高 3~6 倍之多。2) 测试结果显示,CSP 可使芯片 88.4的工作热量传导至 PCB,热阻为 35℃/W- 1,而 TSOP 仅能传导总热量的 71.3,热阻为 40℃/W- 1。3) CSP 所采用的中心球形引脚形式能有效地缩短信号的传导距离,信号衰减也随之减少,芯片的抗干扰、抗噪性能更强,存取时间比 BGA 减少 15~ 20 ,完全能适应 DDRⅡ,DRDRAM 等超高频率内存芯片的实际需要。4) CSP 可容易地制造出超过 1000 根信号引脚数,即使最复杂的内存芯片都能封装,在引脚数相同的情况下,CSP 的组装远比 BGA 容易。CSP 还可进行全面老化、筛选、测试,且操作、修整方便,能获得真正的 KGD(Known GoodDie 已知合格芯片)芯片。2)CSP 封装形式主要有如下分类:5. 先进封装1) 堆叠封装 堆叠封装分类堆叠封装技术是一种对两个以上芯片(片芯、籽芯)、封装器件或电路卡进行机械和电气组装的方法,在有限的空间内成倍提高存储器容量,或实现电子设计功能,解决空间、互连受限问题。堆叠封装分为定制堆叠和标准商业堆叠两大类型:前者是通过芯片层次工艺高密度化,其设计和制造成本相对较高;后者采用板卡堆叠、柔性电路连接器联接、封装后堆叠、芯片堆叠式封装等方式,其成本比采用单芯片封装器件的存储器模块高平均 15~20%。应该看到,芯片堆叠式封装的成本效率最高,在一个封装体内有 2~5 层芯片堆叠,从而能在封装面积不变的前提下,有效利用立体空间提高存储容量,主要用于 DRAM、闪存和SRAM。另外,通过堆叠 TSOP 可分别节约 50或 77的板级面积。 堆叠封装的特点芯片堆叠封装主要强调用于堆叠的基本“元素”是晶圆切片。多芯片封装、堆叠芯片尺寸封装、超薄堆叠芯片尺寸封装等均属于芯片堆叠封装的范畴。芯片堆叠封装技术优势在于采用减薄后的晶圆切片可使封装的高度更低。堆叠封装有两种不同的表现形式,即 PoP 堆叠(Package on Package, PoP)和PiP堆叠(Packagein Package Stacking,PiP)。PoP 堆叠使用经过完整测试且封装完整的芯片,其制作方式是将完整的单芯片或堆叠芯片堆叠到另外一片完整单芯片或堆叠芯片的上部。其优势在于参与堆叠的基本“元素”为成品芯片,所以该技术理论上可将符合堆叠要求的任意芯片进行堆叠。PiP 堆叠使用经过简单测试的内部堆叠模块和基本组装封装作为基本堆叠模块,但受限于内部堆叠模块和基本组装封装的低良率,PiP 堆叠成品良率较差。但 PiP 的优势也十分明显,即在堆叠中可使用焊接工艺实现堆叠连接,成本较为低廉。PoP 封装外形高度高于PiP 封装,但是装配前各个器件可以单独完整测试, 封装后的成品良率较好。堆叠封装技术中封装后成品体积最小的应属 3D 封装技术。3D 封装可以在更小,更薄的封装壳内封装更多的芯片。按照结构可 3D 封装分为芯片堆叠封装和封装堆叠封装。2) 晶圆级封装(WLP) WLP 的优势晶圆级封装(WLP)就是在封装过程中大部分工艺过程都是对晶圆(大圆片)进行操作,对晶圆级封装(WLP)的需求不仅受到更小封装尺寸和高度的要求,还必须满足简化供应链和降低总体成本,并提高整体性能的要求。晶圆级封装提供了倒装芯片这一具有极大优势的技术,倒装芯片中芯片面朝下对着印刷电路板(PCB),可以实现最短的电路径,这也保证了更高的速度,降低成本是晶圆级封装的另一个推动力量。器件采用批量封装,整个晶圆能够实现一次全部封装。在给定晶片上封装器件的成本不会随着每片晶片的裸片数量而改变,因为所有工艺都是用掩模工艺进行的加成和减法的步骤。 WLP 技术的两种类型总体来说,WLP 技术有两种类型:“扇入式”(fan-in)和“扇出式”(fan-out)晶圆级封装。传统扇入 WLP 在晶圆未切割时就已经形成。在裸片上,最终的封装器件的二维平面尺寸与芯片本身尺寸相同。器件完全封装后可以实现器件的单一化分离(singulation)。因此,扇入式 WLP 是一种独特的封装形式,并具有真正裸片尺寸的显著特点。具有扇入设计的 WLP 通常用于低输入/ 输出(I/O)数量(一般小于 400)和较小裸片尺寸的工艺当中。另一方面,随着封装技术的发展,逐渐出现了扇出式 WLP。扇出 WLP 初始用于将独立的裸片重新组装或重新配置到晶圆工艺中,并以此为基础, 通过批量处理、构建和金属化结构,如传统的扇入式 WLP 后端处理,以形成最终封装。扇出式 WLP 可根据工艺过程分为芯片先上(Die First)和芯片后上(Die Last), 芯片先上工艺,简单地说就是先把芯片放上,再做布线(RDL),芯片后上就是先做布线,测试合格的单元再把芯片放上去,芯片后上工艺的优点就是可以提高合格芯片的利用率以提高成品率,但工艺相对复杂。eWLB 就是典型的芯片先上的 Fan out 工艺,长电科技星科金朋的 Fan- out, 安靠(Amkor)的葡萄牙工厂均采用的芯片先上的工艺。TSMC 的INFO 也是芯片先上的 Fan-out 产品。安靠和 ASE 也都有自己成熟的芯片后上的 Fan-out 工艺。在电子设备的发展历史中,WLP 封装技术的推广产生了很多全新的产品。例如得益于WLP 的使用,摩托罗拉能够推出其 RAZR 手机,该手机也是其推出时最薄的手机。最新型号的 iPhone 采用了超过 50 颗WLP,智能手机是WLP 发展的最大推动力。随着金线价格的上涨,一些公司也正在考虑采用WLP 作为低成本替代方案,而不是采用引线键合封装,尤其是针对更高引脚数的器件。最近几年中,WLP 也已经被广泛用于图像传感器的应用中。目前,硅通孔(TSV)技术已被纳入用于封装图像传感器的 WLP 解决方案。其他更新的封装技术也在逐渐发展,并与现有的WLP 技术进行整合,例如三维(3D)集成技术。3) 2.5D/3D 先进封装集成工艺新兴的 2.5D 和 3D 技术有望扩展到倒装芯片和晶圆级封装工艺中。通过使用硅中介层(Interposers)和硅通孔(TSV)技术,可以将多个芯片进行垂直堆叠。TSV 堆叠技术实现了在不增加 IC 平面尺寸的情况下,融合更多的功能到 IC 中,允许将更大量的功能封装到 IC 中而不必增加其平面尺寸, 并且硅中介层用于缩短通过集成电路中的一些关键电通路来实现更快的输入和输出。因此,使用先进封装技术封装的应用处理器和内存芯片将比使用旧技术封装的芯片小约 30或 40,比使用旧技术封装的芯片快 2~3倍,并且可以节省高达 40或者更多的功率。2.5D 和 3D 技术的复杂性以及生产这些芯片的 IC 制造商(Fab)和外包封装/测试厂商的经济性意味着 IDM 和代工厂仍需要处理前端工作,而外包封装/测试厂商仍然最适合处理后端过程,比如通过露出、凸点、堆叠和测试。外包封装/测试厂商的工艺与生产主要依赖于内插件的制造,这是一种对技术要求较低的成本敏感型工艺。三维封装可以更高效地利用硅片,达到更高的“硅片效率”。硅片效率是指堆叠中的总基板面积与占地面积的比率。因此,与其他 2D 封装技术相比, 3D 技术的硅效率超过了 100。而在延迟方面,需要通过缩短互连长度来减少互连相关的寄生电容和电感,从而来减少信号传播延迟。而在 3D 技术中,电子元件相互靠得很近,所以延迟会更少。相类似,3D 技术在降低噪声和降低功耗方面的作用在于减少互连长度,从而减少相关寄生效应, 从而转化为性能改进,并更大程度的降低成本。此外,采用 3D 技术在降低功耗的同时,可以使 3D 器件以更高的频率运行,而 3D 器件的寄生效应、尺寸和噪声的降低可实现更高的每秒转换速率,从而提高整体系统性能。3D 集成技术作为 2010 年以来得到重点关注和广泛应用的封装技术,通过用 3D 设备取代单芯片封装,可以实现相当大的尺寸和重量降低。这些减少量的大小部分取决于垂直互连密度和可获取性(accessibility)和热特性等。据报道,与传统封装相比,使用 3D 技术可以实现 40~50 倍的尺寸和重量减少。举例来说,德州仪器(TI)的 3D 裸片封装与离散和平面封装(MCM)之间的体积和重量相比,可以减少 5~6 倍的体积,并且在分立封装技术上可以减少 10~20 倍。此外,与 MCM 技术相比,重量减少 2~ 13 倍,与分立元件相比,重量减少 3~19 倍。此外,封装技术中的一个主要问题是芯片占用面积,即芯片占用的印刷电路板(PCB)的面积。在采用MCM 的情况下,芯片占用面积减少 20~90 ,这主要是因为裸片的使用。4) 系统级封装 SiP 技术SiP 是半导体封装领域的最高端的一种新型封装技术,将一个或多个 IC 芯片及被动元件整合在一个封装中,综合了现有的芯核资源和半导体生产工艺的优势。SiP 是为整机系统小型化的需要,提高半导体功能和密度而发展起来的。SIP 使用成熟的组装和互连技术,把各种集成电路如 CMOS 电路、GaAs 电路、SiGe 电路或者光电子器件、MEMS 器件以及各类无源元件如电阻、电容、电感等集成到一个封装体内。自从 1960 年代以来,集成电路的封装形式经历了从双列直插、四周扁平封装、焊球阵列封装和圆片级封装、芯片尺寸封装等阶段。而小型化、轻量化、高性能、多功能、高可靠性和低成本的电子产品的总体发展趋势使得单一芯片上的晶体管数目不再是面临的主要挑战,而是要发展更先进的封装及时来满足产品轻、薄、短、小以及与系统整合的需求,这也使得在独立的系统(芯片或者模块)内充分实现芯片的功能成为需要克服的障碍。这样的背景是 SiP 逐渐成为近年来集成电路研发机构和半导体厂商的重点研究对象。SiP 作为一种全新的集成方法和封装技术,具有一系列独特的技术优势,满足了当今电子产品更轻、更小和更薄的发展需求,在微电子领域具有广阔的应用市场和发展前景。 SIP/SOP近年来,随着消费类电子产品(尤其是移动通信电子产品)的飞速发展, 使得三维高密度系统级封装(3D SiP,System in Package/SoP, System on Package)成为了实现高性能、低功耗、小型化、异质工艺集成、低成本的系统集成电子产品的重要技术方案,国际半导体技术路线(ITRS)已经明确 SiP/SoP 将是未来超越摩尔(More than Moore)定律的主要技术。SiP 从结构方向上可以分为两类基本的形式,一类是多块芯片平面排布的二维封装结构(2D SiP),另一类是芯片垂直叠装的三维封装/集成结构(3D SiP).在 2D SiP 结构中,芯片并排水平贴装在基板上的,贴装不受芯片尺寸大小的限制,工艺相对简单和成熟,但其封装面积相应地比较大,封装效率比较低。3D SiP 可实现较高的封装效率,能最大限度地发挥 SiP 的技术优势,是实现系统集成的最为有效的技术途径,实际上涉及多种先进的封装技术,包括封装堆叠(PoP)、芯片堆叠(CoC)、硅通孔(TSV)、埋入式基板(Embedded Substrate)等,也涉及引线键合、倒装芯片、微凸点等其他封装工艺。3D SiP 的基本概念正是将可能实现的多种功能集成于一个系统中,包括微处理器、存储器、模拟电路、电源转化模块、光电器件等, 还可能将散热通道等部件也集成在封装中,最大程度的体现 SiP 的技术优势。系统级封装技术可以解决目前我们遇到的很多问题,其优势也是越来越明显,如产品设计的小型化、功能丰富化、产品可靠性等,产品制造也越来越极致,尤为重要的是,提高了生产效率,并大幅降低了生产成本。当然, 难点也是存在的,系统级封装的实现,需要各节点所有技术,而不是某一技术所能实现的,这对封装企业来说,就需要有足够的封装技术积累及可靠的封装平台支撑,如高密度模组技术、晶圆级封装技术等。 多芯片组件(MCM)多芯片组件(MCM)属于系统级封装,是电子封装技术层面的大突破。MCM 是指一个封装体中包含通过基板互连起来,共同构成整个系统的封装形式的两个或两个以上的芯片。并为组件中的所有芯片提供信号互连、I/O 管理、热控制、机械支撑和环境保护等条件。根据所用多层布线基板的类型不同,MCM 可分为叠层多芯片组件(MCM-L)、陶瓷多芯片组件(MCM-C)、淀积多芯片组件(MCM-D)以及混合多芯片组件(MCM–C/D)等。多芯片封装技术从某种程度上而言可以减少由芯片功能过于复杂带来的研发压力。由于多芯片方案可以使用完全独立的成熟芯片搭建系统,无论从成本角度还是从技术角度考虑,单芯片方案的研发难度远大于多芯片方案。现阶段产品发展的趋势为小型化便携式产品,产品外部尺寸的缩小将压缩芯片可用布线空间,这就迫使封装技术改善封装的尺寸来适应更小型的产品。二、封装基板已经是半导体封装中价值量最大的耗材2.1. 封装基板是 IC 芯片封装的新兴载体传统的半导体封装,是使用引线框架作 IC 导通线路与支撑 IC 的载具, 它连接引脚于引线框架的两旁或四周。随着半导体封装技术的发展,当引脚数增多(超过 300 个引脚),传统的 QFP 等封装形式已对其发展有所限制。这样, 在 20 世纪 90 年代中期, 以 BGA、CSP 为代表的新型半导体封装形式问世, 随之也产生了一种半导体芯片封装必要的新载体,这就是半导体封装基板 (IC Package Substrate,又称为半导体封装载板) 。IC 封装基板起到在芯片与常规印制电路板 (多为主板、母板、背板) 的不同线路之间提供电气连接 (过渡)的作用,同时为芯片提供保护、支撑、散热的通道, 以及达到符合标准安装尺寸的功效。可实现多引脚化、缩小封装产品面积、改善电性能及散热性、实现高密度化等是它的突出优点。因此以 BGA、CSP 以及倒装芯片 ( FC,Fpil Chpi) 等形式的半导体封装基板, 在近年来的应用领域得到迅速扩大,广为流行。基于在半导体封装中充分运用高密度多层基板技术方面,以及降低封装基板的制造成本方面(封装基板成本以 BGA 为例约占 40-50,在 FC 基板制造成本方面它约 70-80)的需求,半导体封装基板已成为一个国家、一个地区在发展微电子产业中的重要“武器”之一。2.2. 从芯片支撑材料角度来看半导体封装技术分类目前普遍使用的封装技术有很多,可分为以下几类:芯片的封装种类太过繁杂,为了方便理解,我们将分类方式简化,以封装过程中使用的承载晶圆或芯片的耗材的不同来份额里,半导体封装技术可以分为引线框封装、裸芯片封装/晶圆级封装和镶入式封装三类。2.1.1. 引线框架封装(Leadframe Packages)传统的 IC 封装是采用导线框架作为 IC 导通线路与支撑 IC 的载具,它连接引脚于导线框架的两旁或四周。随着 IC 封装技术的发展,引脚数量的增多(超过 300 以上个引脚)、、线密度的增大、基板层数的增多,使得传统的 QFP 等封装形式在其发展上有所限制。我们把使用传统引线框架和封装壳的封装技术称为引线框架式封装技,多用于如方形扁平无引脚封装(QFN)和方型扁平式封装(QFP)。1. 引线框架封装工艺使用引线框架和外部封装壳的芯片封装制作工艺十分相似。基本流程为: 首先使用充银环氧粘结剂将晶圆切片粘附于引线框架上,然后使用金属线将晶圆切片的管脚与引线框架上相应的管脚连接,再将引线框架与封装壳组合在一起,最后使用模塑包封或者液态胶灌封,以保护晶圆切片、连接线和管脚不受外部因素的影响。2. 引线框架主要性能半导体封装引线框架大多采用铜材或铁镍合金(A42)两种材质,在封装中, 引线框架主要有如下作用:引线框架封装(如 SO、QFP、QFN)仍然是 I/O 小于 200 的半导体中最常见的。模具通常采用金属丝连接,封装也很简单,虽然使用倒装芯片、多模和模/无源组合的变体也在批量生产中。陶瓷封装在很大程度上可以被看作是遗留技术。虽然它们过去在 IC 上很常见,但现在几乎只用于军事和航空电子等高可靠性应用,不愿在封装技术上做出改变。2.2.2. 镶入式封装技术-基于基板的封装嵌入式芯片(Embedded Component Packaging EPC),封装与大多数封装类型并不相同。一般来说,在许多集成电路封装中,器件位于基板的顶部, 基板充当器件与封装板间“桥梁”的角色。“嵌入式封装”一词有着不同的含义,在嵌入式芯片封装的世界中,指采用多步骤制造工艺将元器件嵌入到基板中。单芯片、多芯片、MEMS 或无源元器件均可以并排式(side-by-side)方式嵌入到有机层压基板(Organic Laminate Substrate)之中。这些元器件均通过镀铜的通孔(via)连接起来。总而言之,通过嵌入式封装,就可以释放系统中的空间。在 TDK 的工艺中,器件被嵌入四个极薄的基板叠层中, 以微互连和通孔为主要特点,总高度为 300m。封装尺寸是将有源芯片嵌入基板中的驱动因素。在‘x’和‘y’轴上,会显著地整体收缩。当考虑版图布线更大化时,这种微型化可让设计多一些灵活性。如今嵌入式有源元器件的市场,主要围绕着功率模拟器件领域。蓝牙无线模块(Bluetooth WiFi moles)的微型化特点,已成为嵌入式芯片封装的主要应用领域。其他应用还包括手机市场的射频模块。”1. 镶入式封装的优劣势通常情况下,IC 会被封装在电路板上,但这样有时会占用系统中宝贵的电路板空间,因此考虑把芯片嵌入到基板中以节省空间和成本,这就是嵌入式芯片封装的用武之地,并不会与晶圆级封装中的扇出型封装相混淆。扇出型封装中,裸片会被嵌入到环氧模压树脂(molded epoxy compound) 填充的重新建构晶圆(reconstituted wafer)中。嵌入式芯片封装是不同的。这些元器件被嵌入到多层基板中,IC 会被嵌入基板的核心部位。核心部位是用特殊的树脂做的,其他基板层均是标准的 PCB 材料。裸片通常是并排放置的,如果是标准的 4 层基板,所有裸片都会被放置于 2 层与 3 层之间,且裸片不会堆叠。嵌入式封装的主要优点有:促进尺寸微型化、互连可靠、性能更高,并改善了对集成元器件的保护。ECP 还支持模块化的趋势,通过降低其他封装技术的成本来实现。隐身的电子器件(嵌入式芯片)可有效防止逆向工程和造假。”嵌入式封装也有缺点。由于它结合了用于先进封装和印刷电路板(PCB)的技术,因此面临一些制造方面的挑战。此外,生态系统还相对不成熟。嵌入式芯片的成本仍然过高,且有时良率太低。嵌入式封装是将多个芯片集成到单个封装体中的几种方法之一,但并不是唯一选择。系统级封装是最受欢迎的选择,但由于成本原因,扇出型封装也有很大的发展潜力。正是这些封装解决方案为市场提供价格更低、技术更好的解决方案。2. 按基板类型的镶入式封装分类基板从材料上可分为有机基板和无机基板两大类;从结构上可分为单层(包括挠性带基)、双层、多层、复合基板等。多层基板包括通用制品(玻璃-环氧树脂)、积层多层基板、陶瓷多层基板、每层都有埋孔的多层基板。陶瓷封装在很大程度上可以被看作是遗留技术。虽然它们过去在 IC 上很常见,但现在几乎只用于高可靠性的应用,如军事和航空电子设备。由于不愿意在封装技术上做出改变。有机基板封装(BGA, CSP)使用小型刚性(有时弯曲)基板,其上的模具是金属丝粘结或倒装芯片。大多数这样的封装使用一组球或地与主机 PCB 接口。哪一个允许这些包容纳多达 4000 个外加 I/O2.2.3. 裸芯片封装/晶圆级封装(WLP)1. 裸芯片封装/组装目前伴随芯片功能的提升,芯片的工作频率大幅增加。从 MHz 到 GHz,芯片的工作频率有了质的飞跃。芯片对外围电路的要求也越严苛。微秒,纳秒级的延迟都会使数据传输出现严重错误。如何消除信号在外部电路传输时的延迟效应是设计人员不能回避的问题。在传统封装中晶圆切片与封装壳的连接方式会引入新的负面因素—Wire bonding 金属线和封装壳引脚,过长的信号线会使信号传输时受寄生 RC 的影响出现延迟,同时也易受到干扰。而使用裸芯片技术减少了芯片传输线的长度,从而使芯片信号的延迟大大减少。裸芯片技术在减小封装体体积的同时,还将大大提高信号传输品质,这也是与其他封装技术相比裸芯片封装技术的重要优势。但是,裸芯片技术由于在封装中没有封装壳的保护, 芯片晶背暴露在外,存在被损坏的风险。所以裸芯片虽然能在绝大多数应用领域取代传统封装形式的芯片,但是绝对不能百分之百点对点可代替。现有的芯片封装技术在面对封装尺寸进一步缩小,封装成本进一步下降的需求时,有些力不从心。在现有封装技术中晶圆切片的实际尺寸已经很小, 制约封装尺寸缩小的因素是封装方式本身(即便是使用 CSP 封装,封装比为 1.14,仍然有 14%的空间被浪费)。而适时引入裸芯片技术则可很好的解决上述问题。若将裸芯片组装于新的封装基材上,则称为裸芯片封装,若将裸芯片直接 组装在 PCB 板上,则称为裸芯片组装。裸芯片封装/组装是指在芯片与目标板(封装基板或 PCB 板)的连接过程中,裸芯片为原始的晶圆切片形式, 芯片没有经过预先的封装而直接与目标板连接。引入裸芯片封装,可以减少由封装壳产生的额外的体积,将标准的半导体封装芯片直接更换成无封装的裸芯片,可使研发人员直接获得该芯片理论上的最小尺寸,从而提高 PCB 板布线空间的利用率。如图中所示,18M 的同步 SRAM 在使用不同的封装形式时,至少可以节省 70的空间。裸芯片封装是一个独特的类别,包括 COB(主板芯片:直接连接到主 PCB 上的芯片线编解码器)和 COF/COG (Flex 或玻璃上的芯片),后者是将芯片直接翻转到显示器的玻璃或弯曲电路上。2. 晶圆级封装(WLP)晶圆级封装(WLP)就是在封装过程中大部分工艺过程都是对晶圆(大圆片) 进行操作,对晶圆级封装(WLP)的需求不仅受到更小封装尺寸和高度的要求,还必须满足简化供应链和降低总体成本,并提高整体性能的要求。2.3. 封装基板的定义、种类及生产工艺2.3.1. 封装基板的定义封装基板(Package Substrate)是由电子线路载体(基板材料)与铜质电气互连结构(如电子线路、导通孔等)组成,其中电气互连结构的品质直接影响集成电路信号传输的稳定性和可靠性,决定电子产品设计功能的正常发挥。封装基板属于特种印制电路板,是将较高精密度的芯片或者器件与较低精密度的印制电路板连接在一起的基本部件。2.3.2. 封装基板的作用20 世纪初期,“印制电路”的概念被 Paul Eisler 首次提出,并研制出世界上第一块印制电路板(Printed Circuit Board,PCB)。集成电路封装基板是随着半导体芯片的出现而从印制电路板家族中分离出来的一种特种印制电路板,其主要功能是构建芯片中集成电路与外部电子线路之间的电气互连通道。2.3.3. 封装基板发展的三个阶段当前封装基板可以简单的理解为是具有更高性能或特种功能的 PCB,是可为芯片、电子元器件等提供电气连接、保护、支撑、散热、组装等功效, 以实现多引脚化,缩小封装产品体积、改善电气性能及散热性、超高密度或多芯片模块化以及高可靠性的电子基板。到目前为止,世界半导体封装基板业历程可划分为三个发展阶段:2.3.4. 封装基板(IC 载板)与 PCB 的异同1. 电子封装工程中封装、实装、安装及装联的区别2. 封装基板与 PCB 的区别封装基板是可为芯片、电子元器件等提供电气连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小封装产品体积、改善电气性能及散热性、超高密度或多芯片模块化以及高可靠性的电子基板。封装基板可以简单的理解为是具有更高性能或特种功能的 PCB 或薄厚膜电路基板。封装基板起到了芯片与常规印制电路板(多为母板、副板,背板等)的不同线路之间的电气互联及过渡作用,同时也为芯片提供保护、支撑、散热、组装等功效。在电子封装工程中,电子基板(PCB)可用于电子封装的不同层级(主要用于 1~3 级封装的第 2~5 层次),只是封装基板用于 1、2 级封装的 2、3层次,普通 PCB 用于 2、3 级封装的 3、4、5 层次。但是它们都是为电子元器件等提供互联、保护、支撑、散热、组装等功效,以实现多引脚化, 缩小封装产品体积、改善电气性能及散热性、超高密度或多芯片模块化以及高可靠性为目的。主板(母板)、副板及载板(类载板)常规 PCB(多为母板、副板,背板等) 主要用于 2、3 级封装的 3、4、5 层次。其上搭载 LSI、IC 等封装的有源器件、无源分立器件及电子部件,通过互联构成单元电子回路发挥其电路功能。随着电子安装技术的不断进步与发展,电子安装各阶层的界限越来越不清晰,各阶层安装的交叉、互融,此过程中 PCB 的作用越来越重要,对 PCB 及其基板材料在功能、性能上都提出了更高、更新的要求。3. 封装基板从 PCB 中分离独立出来的历程和原因20 世纪 80 年代以后,新材料、新设备的广泛应用,集成电路设计与制造技术按照“摩尔定律”飞速发展,微小敏感的半导体元件问世,大规模集成电路与超大规模集成电路设计出现,高密度多层封装基板应运而生,使集成电路封装基板从普通的印制电路板中分离出来,形成了专有的集成电路封装基板制造技术。目前,在常规 PCB 板的主流产品中,线宽/线距 50μm/50μm 的产品属于高端 PCB 产品了,但该技术仍然无法达到目前主流芯片封装的技术要求。在封装基板制造领域,线宽/线距在 25μm/25μm 的产品已经成为常规产品,这从侧面反映出封装基板制造与常规 PCB 制造比,其在技术更为先进。封装基板从常规印制电路板中分离的根本原因有两方面:一方面,由于PCB 板的精细化发展速度低于芯片的精细化发展速度,导致芯片与 PCB 板之间的直接连接比较困难。另一方面,PCB 板整体精细化提高的成本远高于通过封装基板来互连 PCB 和芯片的成本。2.3.5. 封装基板的主要结构和生产技术目前,在封装基板行业还没有形成统一的分类标准。通常根据适用基板制造的基板材料、制作技术等方面进行分类。根据基板材料的不同,可以将封装基板分为无机封装基板和有机封装基板。无机封装基板主要包括:陶瓷基封装基板和玻璃基封装基板。有机封装基板主要包括:酚醛类封装基板、聚酯类封装基板和环氧树脂类封装基板等。根据封装基板制作方法不同,可以将封装基板分为有核(Core)封装基板和新型无核(Coreless) 封装基板。1. 有核和无核封装基板有核封装基板在结构上主要分为两个部分,中间部分为芯板,上下部分为积层板。有核封装基板制作技术是基于高密度互连(HDI)印制电路板制作技术及其改良技术。无核基板,也叫无芯基板,是指去除了芯板的封装基板。新型无核封装基板制作主要通过自下而上的电沉积技术制作出层间导电结构—铜柱。它仅使用绝缘层(Build-up Layer)和铜层通过半加成(SemiAdditive Process,缩写为 SAP)积层工艺实现高密度布线。2. 封装基板的结构封装基板的主要功能是实现集成电路芯片外部电路、电子元器件之间的电气互连。有核封装基板可以分为芯板和外层线路,而有核封装基板的互连结构主要包括埋孔、盲孔、通孔和线路。无核封装基板的互连结构则主要包括铜柱和线路。无核封装基板制作的技术特征主要是通过自下而上铜电沉积技术制作封装基板中互连结构—铜柱、线路。相比于埋孔和盲孔,铜柱为实心铜金属圆柱体结构,在电气传输方面性能更加优良,铜柱的尺寸也远低于盲孔的尺寸,直接在 40μm 左右。3. 封装基板的主流生产技术1) 主要的积层精细线路制作方法半导体封装基板层间互联、积层精细线路制作方法是从高密度互联/积层多层板(High Density Interconnection/Build up Multilayer,HDI/BUM) 衍生而来,HDI/BUM 板制造工艺技术种类繁多,通过可生产性、可靠性和成本等各方面的优胜劣汰和市场选择,目前比较成熟的工艺集中在 3-5 种。早期的集成电路封装基板由于封装芯片 I/O 数有限,其主流制作技术是印制电路板制造通用技术—蚀刻铜箔制造电子线路技术,属于减成法。IC 设计趋势大致朝着高集成化、快速化、多功能化、低耗能化及高频化发展, 对应的半导体封装基板呈现出“四高一低”的发展趋势,即高密度布线、高速化和高频化、高导通性、高绝缘可靠性、低成本性。在近年的电子线路互连结构制造领域,相比于蚀刻铜箔技术(减成法),半加成法主要采用精确度更高、绿色的电沉积铜技术制作电子电路互连结构。近十几年来,在封装基板或者说整个集成电路行业,互连结构主要是通过 电沉积铜技术实现的,其原因在于金属铜的高性能和低价格,避免了蚀刻 铜流程对互连结构侧面蚀刻,铜的消耗量减少,互连结构的精细度和完整 性更好,故电沉积铜技术是封装基板制作过程中极其重要的环节。2) 封装基板制作技术-高密度互连(HDI)改良制作技术高密度互连(HDI)封装基板制造技术是常规 HDI 印制电路板制造技术的延伸,其技术流程与常规 HDI-PCB 板基本相同,而二者的主要差异在于基板材料使用、蚀刻线路的精度要求等,该技术途径是目前集成电路封装基板制造的主流技术之一。由于受蚀刻技术的限制,HDI 封装基板制造技术在线路超精细化、介质层薄型化等方面遇到了挑战,近年出现了改良型HDI 封装基板制造技术。根据有核封装基板的结构,把 HDI 封装基板制作技术流程主要分为两个部分:一是芯层的制作;二是外层线路制作。改良型 HDI 封装基板制造技术主要是针对外层线路制作技术的改良。常规 HDI 技术制作封装基板的流程3) 封装基板新型的制造技术--改良型半加成法基于磁控溅射种子层的电沉积互连结构是一条全新的封装基板制造技术途径,该制作技术被称为改良型半加成法。此外,由于该技术途径不像 HDI 技术需要制作芯板,因此被称为无核封装基板制作技术。无核封装基板制作技术不需要蚀刻铜箔制作电子线路,突破了 HDI 途径在超精细线路制作方面存在的技术瓶颈,成为高端封装基板制造的首选技术。另外,该技术采用电沉积铜制作电气互连结构,故互连结构的电沉积铜技 术已经是无核封装基板制作的核心技术之一。三、封装材料和封装基板市场3.1. 封装基材和基板市场及技术发展3.1.1. 封装技术应用的演进即使是最古老的封装技术仍然在使用今天。但是,通过从线键到倒装芯片外围设备再到阵列封装、缩小 I/O 间距、更小的封装体和多组件模块,以实现更高密度封装是明显的趋势。3.1.2. 封装基板在晶圆制造和封装材料价值量占比最大晶圆制造和封装材料主要包括引线框架、模封材料(包封树脂、底部填充料、液体密封剂)、粘晶材料、封装基板(有机、陶瓷和金属)、键合金属线、焊球、电镀液等.3.1.3. 封装基板行业景气度的变化在大约 2500 亿套集成电路封装中,1900 亿套仍在使用铜线键合技术,但倒装芯片的增长速度快了 3 倍。1500 亿套仍在使用铅框架,但有机基质和WLCSP 的增长速度快了三倍。只有约 800 亿半导体封装是基于有机基板, 有机封装基板市场大约 80 亿美元,相当于整个 PCB 行业的 13%.3.1.4. 有机和陶瓷封装基板是封装基板中的主流在高密度封装中,为了降低反射噪声、串音噪声以及接地噪声,同时保证各层次间连接用插接端子及电缆的特性阻抗相匹配,需要开发高层数、高密度的多层布线基板。按基板的基体材料,基板可分为有机系(树脂系)、无机系(陶瓷系、金属系)及复合系三大类。一般来说,无机系基板材料具有较低的热膨胀系数, 以及较高的热导率,但是具有相对较高的介电常数,因此具有较高的可靠性,但是不适于高频率电路中使用;有机系基板材料热膨胀率稍高,散热较差,但是具有更低的介电常数,且质轻,便于加工,便于薄型化。同时由于近几十年内聚合物材料的不断发展,有机系基板材料的可靠性有极大提升,因此己经被广泛应用。目前广泛应用的有机基板材料有环氧树脂,双马来醜亚胺三嘆树脂(聚苯醚树脂,以及聚醜亚胺树脂等。3.1.5.2019 年封装材料市场规模在 200 亿美金左右,封装基板约占 64根据国内亚化咨询预测,2019 年中国半导体封装材料市场规模将超 400 亿元人民币,约折合 57 亿美元左右。3.2. 封装基板主流产品市场3.2.1. 全球地区分布有机封装基板市场一直很小,直到 1997 年英特尔开始从陶瓷基板向有机基板过渡,在基板封装的基板价值可以占封装总价值(不包括模具)的 15%至 35%。目前,世界上半导体封装基板生产主要在亚洲(除日本和中国)、日本、中国、美国及欧洲。从产值上看, 封装基板的生产国家主要是日本、亚洲(除日本和中国以外,以韩国和台湾为主)和中国。2019 年封装基板的市场价值预计为 81 亿美元,预计未来五年将以每年近 6.5的速度增长。其中,亚洲(除日本和中国以外,以韩国和台湾为主)的占有率接近 61,日本约为 26,中国,13 左右,而美国、欧洲及世界其它地区占有比例则相当小.3.2.2 全球载板主要制造地及主要制造商现状根据 2019 年 Prismark 的统计数据,目前全球载板的市场容量约为 81 亿美元,量产公司近 30 家。从生产地来看,全球载板主要在韩国、中国台湾、日本和中国内地四个地区生产(99 )。近年来中国内地量产厂商数量增长明显,但产值仍较小; 2019 年全球前十五大载板公司如下表所示。从表中可以看出,载板公司基本上都是PCB 产品多元化,即非从事单一的载板业务(唯一例外的是日月光材料(仅从事 BGA 载板制造),主要是由于该公司的母公司从事的是封测代工服务.期初,日本供应商主导封装基板供应链。目前日本仍以超过 50%的份额主导着高端 FCBGA/PGA/LGA 市场,我们认为未来五年内这种情况不会有实质性变化。在所有其他封装基板类别中,台湾/中国大陆和韩国的供应商占据市场主导地位。……3.2.3. 主流封装基板产品分类1. 按基材材质分类封装基板按基材材质可分为刚性有机封装基板、挠性封装基板和陶瓷封装基板。2. 按制造工艺分类封装基板按照制造工艺可分为刚性基板(含陶瓷基板)、挠性基板、积层法多层基板(BUM)。3. 按性能分类封装基板按照性能可分为:低膨胀系数(a)封装基板、高玻璃化温度(Tg) 封装基板、高弹性率封装基板、高散热性封装基板、埋入元件型封装基板。4. 按应用领域分类根据封装基板不同的用途,可将封装基板分为:3.2.4. 六种产品占据封装基板市场主要份额1. 主流封装基板产品市场规模和结构封装基板产品多样化,从产值分布来看, 2019 年封装基板主要以 FC BGA/PGA/LGA(Flip Chip Ball/Pin/Land Grid Array,倒装芯片球/针/平面栅格阵列封装基板)、FCCSP(Flip Chip Chip Scale Packaging,倒装芯片级封装基板)、FCBOC(Flip Chip Board on Chip for DRAM,动态随机存取存储器用芯片封装基板)及 WB PBGA(Wire Bond PBGA,键合塑料球栅阵列封装)WB CSP(Wire Bond Chip Scale Packaging 键合芯片级封装基板),RF & Digital Mole(频射及数字模块封装基板)为封装基板市场的六类主要产品.从供给来看,2019 年全球主要有 5 个地区生产封装基板,分别是日本、中国、亚洲(除去日本和中国,主要是台湾、韩国和其他地区)、美国和欧洲。Prismark 按照 WB PBGA/CSP、FC BGA/PGA/LGA、FC CSP/BOC 和 RF AND Digital Mole 四类统计,预计 2019 年共计实现产值 81.39 亿美元,同比增速为 7.74,四类产品产值分别为 20.07、33.52、17.24 和 10.55 亿美元,占比分别为 24.66、41.18 、21.19 和 12.96.2. WB PBGA/CSPWB(wire-bonding,引线键合封装技术),用金属丝将芯片的 I/O 端(内侧引线端子)与相对应的封装引脚或者基板上布线焊区(外侧引线端子)互连,实现固相焊接的过程。PBGA (Plastic ball grid array package) 塑料球栅阵列。主要用于满足 200-800I/O 引脚数需求。目前正持续被高端倒装芯片及低端低成本 CSP 封装抢占市场。20 世纪 90 年代末,PBGA 封装之后不久出现了线键 CSP 封装,精细间距 BGA(FBGA)和 CSP 是完全相同的,但在未来它将被简单地称为 CSP。CSP 是一种更有效的线状键合 PBGA 封装,具有更紧密的球间距(0.8mm 及以下),因此被称为细间距 BGA 或 FBGA。我们也可以进一步将 CSP 定义为:封装尺寸小于 20 毫米的所有基板。CSP 最初是运用于较少引脚数的设备,但现在已经扩展到容纳 700 个 I/O 及以上的设备。WB CSP 用金线将半导体芯片与封装基板连接,半导体芯片的大小大于基板面积 80%的产品通常被称为“WBCSP”(引线键合芯片尺寸封装)。随着半导体市场的发展,对 WBCSP 的总需求继续增长。但因为高速增长的FCCSP,WBCSP 市场份额逐渐减少。但对于许多 I/O 为 20–500 的设备来说,它仍是一种经济高效的方法。CSP 的需求最初主要由大容量移动电话市场驱动,但如今,大多数其他便携式和非便携式应用程序都在使用 CSP 封装,以实现更小的尺寸和更好的电气性能。2019 年全球WB PBGA/CSP 封装基板产值预计为 20.07 美元,占全球封装基板总产值 24.66。Prismark 预计 2024 年全球 FC BGA/PGA/LGA 封装基板产值将达 21.98 美元,年复合增长率为 1.83。目前 PBGA 基板及 CSP 基板的主要生产供应商有 JCI (日本)、Ibiden (日本)、Samsung (韩国)、LG (韩国)及 PPT 等公司。在 TBGA 基板方面,目前日本厂商仍然占据主导地位。日本的主要供应商包括: Shinko、Hitachi Cable 、Mitsui 及 Sumitomo 等公司。3. FC BGA/PGA/LGAFC BGA/PGA/LGA,全称 Flip Chip Ball/Pin/Land Grid Array,倒装芯片球/针/平面栅格阵列封装基板。随着芯片集成度不断提高,其对集成电路封装要求更加严格。I/O 引脚数的急剧增加,使得 FC BGA/PGA/LGA 广泛用于具有高复杂性的 MPU(微处理器和内存保护单元)、CPU(中央处理器) 和逻辑器件的封装。BGA、PGA、LGA 三种封装所用封装基板相似,但它们与主板的交互方式不同。所有这些封装都使用倒装芯片互连,而不是导线连接。2019 年全球 FC BGA/PGA/LGA 封装基板产值预计为 33.52 亿美元,占全球封装基板总产值 41.18。Prismark 预计 2024 年全球 FC BGA/PGA/LGA 封装基板产值将达 51.86 亿美元,年复合增长率为 9.12。4. FC CSP/BOC1) FCCSP半导体芯片不是通过引线键合方式与基板连接,而是在倒装的状态下通过 凸点与基板互连,因此而被称为“FCCSP”(Flip Chip Chip Scale Package)。倒装芯片 CSP (FCCSP)包提供了一个较低的轮廓,更好的电气性能,并略高于传统的电线结合 CSP 包 I/O。FCCSP 与 FCBGA 的区别仅在于封装尺寸(<20mm)、填料节距(典型的 CSP 为<0.8mm 球节距),通常为 60-1.300 1/0。由于FC CSP 封装的高性能(将半导体芯片到 PCB 间的距离降至最低,信号损失很少,可确保高性能)和高 I/O (得益于精细 bump pitch,形成大量 I/O 应用),主要用于手机应用处理器、基带等产品封装中。2) FCBOCBOC(Board on Chip for DRAM)主要包括 WBBOC 和FCBOC 两种。2018 年 以前,大多数DRAM 设备都采用WBBOC 封装,尤其是在2017 年,三星(Samsung) 推出了超过 35 亿个WBBOC 封装。FC BOC 是指使用倒装技术的 DRAM 封装,三星从 2015 年前就开始将这项技术用于图形 DDR(内存)或 GDDR(显存),现在正将其用于 PC 应用程序中的主流 DDR,2019 年及以后FCBOC 将逐渐完全取代WBBOC 封装。BOC 的主要用户是存储器公司-三星、SK Hynix 和 Micron,主要的基板供应商包括 Simmtech、Eastern、ASE Material、Unimicron 等。2019 年全球 FC CSP/BOC 封装基板产值预计为 17.25 亿美元,占全球封装基板总产值 21.19。Prismark 预计 2024 年全球 FC CSP/BOC 封装基板产值将达 20.60 亿美元,年复合增长率为 3.61。5. RF AND Digital Mole 频射及数字模块1) Digital Mole数字模块将多个模具和其他组件被焊接或嵌入主板,从而可以包括任意数量的模块应用。迄今为止最常见的包括 MEMS 传感器、MEMS 麦克风和摄像头模块。用于数字模块的基板与用于 BGA 和 CSP 封装的基板相似。他们通常使用简单的两到四层基板,但现在加入了更先进的薄核组装基板设计。特别是对于许多 MEMS 麦克风来说,一个独特的区别是在基板中使用了嵌入式电容器和电阻箔。主要数字模组基板供应商包括金星、Unimicron、南亚 PCB、深南、森科、LG Innotek 等。2) RF Mole射频模块包括一系列解决方案,通常包括一个或多个有源功率器件和无源元件。RF 模块常见于功率放大器(PA)和功率放大器双工器(PAD)模块, 还用于 WLAN/蓝牙和/或 GPS 的连接模块,通常使用有机封装基板。射频模块的尺寸通常为 3 毫米到 10 毫米,通常可以包含一到四个有源 CMOS 或砷化镓芯片,以及多达四十个分立无源元件。2019 年全球RF AND Digital Mole 封装基板产值预计为 10.55 美元,占全球封装基板总产值 12.96%。Prismark 预计 2024 年 RF AND Digital Mole 封装基板产值将达 17.10 美元,年复合增长率为 10.41%。四、封装基板应用的关键市场和技术驱动因素4.1. 用于高性能计算的大面积 FCBGA 封装需求驱动封装基板需求成长4.1.1. 高性能计算包括传统的基于 cpu 的计算机,从高端桌面和笔记本电脑到领先的服务器、计算和网络应用程序三大类。后者越来越多地使用 GPU 和高级内存总线来实现超级计算和 Al 应用程序所需的高性能。长期以来,高端 CPU 和 GPU 一直被封装在 FCBGA、FCLGA 或FCPGA 中,它们可以通过插槽直接安装到主机的主 PCB 上,也可以使用中间的子卡。在笔记本电脑中系统级的尺寸和厚度要求 CPU 直接安装在主机的主板上。然而,在桌面服务器和许多其他高性能计算应用程序,CPU 通常以 BGA 或LGA 包的形式提供,并通过插座或类似的连接器安装到主板上。Intel 的高端服务器 CPU,包括联想服务器使用的 Xeon CPU,都采用了公司的 PoINT(Patch on INTerposer)技术。在英特尔的命名法中,CPU 芯片被翻转到一个“补丁”上,这实际上是一个具有高路由密度的 BGA 基板, 以适应前沿的 CPU 芯片。然后将此补丁安装到插入器上。Intel 将补丁称为 HDI(高密度互连),将插入器称为 LDI(低密度互连)。在 Prismark 的术语中,两者都是内置的封装基板,而插入器的路由密度略低。4.1.2. Al 和机器学习带来了对海量数据的处理需求英特尔的 Xeon 是一款传统的、但处于领先地位的 CPU,它是专注应用于 Al 和机器学习一种新的高端处理,而这些应用使用 GPU。所有的应用程序都依赖于模式识别来创建一个算法来解释大量的数据,而 GPU 比 CPU 更适合这种类型的数据处理。自动驾驶汽车可能是这些新型人工智能应用中最具辨识度的一个。但机器学习也被用于语音识别、游戏、工业效率优化和战争。Nvidia 是这些 Al 应用的 GPU 的主要供应商,该公司的 Nvidia 的自动驾驶汽车驱动平台是系统和组件封装实践的一个很好的例子最初用于特斯拉自动驾驶仪的驱动平台,本质上是一个小型(31x16cm 的盒子)超级计算机,它可以解读汽车传感器的数据,创建出汽车周围环境的虚拟 3D 地图。并决定适当的行动。值得注意的是,大量数据定期上传到汽车制造商的数据中心,在那里, 基于数百万英里的驾驶经验,自动驾驶算法不断改进。这些例子的 CPU 和 GPU 是大型尺寸的 FCBGA 封装驱动的需求复杂的封装基板的主要例子。4.2. SiP/模块封装需求旺盛驱动封装基板需求成长有机封装基板的第二个重要增长驱动力是 SiP/moles。SiP(System-in-Package)将主动和被动元器件组合在一个包含特定功能的封装体/模块中。最突出的 SiP 是用于蜂窝和其他射频系统的射频模块, 如功率放大器模块。前端模块和 WiFi 模块。其他例子包括传感器模块,如MEMS 加速度计算或摄像机模块,以及电源模块,比如 DC/DC 转换器。大多数这样的模块使用刚性 PCB 基板,虽然有些使用柔性,陶瓷,或引线框载体。与上面讨论的高性能计算设备相比,IO 数量很低(大多数远低于 100),并且封装的球/垫的间距非常宽松(最多为 1 毫米)。另一方面,特别是射频模块往往有一个很多且越来越多的器件和元件,必须在模块内互连。这增加了模块基板的路由密度,增加了它的层数和设计几何形状。4.2.1. 新的射频模块应用是 5G mmWave 天线模块用于 5G 智能手机和类似的 5G 接入设备。这种应用的高频率要求射频收发器和天线之间的近距离。因此,mmlWave 天线模块被设计成将收发器和支撑组件安装在一侧,贴片天线安装在另一侧。结果是一个复杂的 5-2-5 基板。每个 5G 中使用三或四个这样的天线模块毫米波智能手机。4.2.2. 非射频 SiP 模块应用苹果提供了有趣的推动力。从苹果手表,几乎所有的组件都装在一个大的SiP。另一个 interestinoSiP 的例子是用在苹果的新 AirPods 专业无线耳机。之前的 AirPods 主要使用的是安装在伸缩电路上的分立元件(还有一些更小的 SiP)。新的 AirPods Pro 将几乎所有的组件整合到一个 5x10 毫米的 SiP 中。这个 SiP 非常复杂。实际上,它本身由四个 SiP 和一个跨接PCB 组成,所有这些都组合成一个小的组件。主 SiP 结合了几个 WLCSP 到一个 3-2-3 基板的顶部然后集成封装。该基板的底部支持一个额外的三个 SiP(一个蓝牙 SiP 和两个 MEMS 加速计 SiP)加上一个跨接 PCB 用于连接到 AirPods Pro flex 电路。蓝牙 SiP 本身是相当复杂的,包括蓝牙芯片和内存芯片,加上一个时钟和被动式,安装在一个 6L 任意层基板的两侧并覆盖成型。每年要交付数十亿个 SiP/模块,比大型 BGA 包高出一个数量级。4.3. 先进封装基板市场的发展驱动封装基板需求成长封装基板的需求已经被持续使用的晶圆级 CSP 削弱。WLCSP 发展迅速,因为他们提供了小尺寸,可以非常薄(<0.4 毫米)和提供良好的球间距(0.35 毫米),且不使用任何基材或载体。但 WLCS 广泛应用于智能手机和其他便携式产品中。然而封装基板的主要增长动力是大面积 FCBGA 封装和 SiP。在可实现的布线密度方面,硅的技术路线图超过了 PCB。封装基板是用来提供高密度的接口之间的硅模具和更大,低密度 PCB 主板。但是用于高性能计算处于领先地位的 CPU 和 GPU,即使是高密度的封装基板也不足以实现一级互连。以 5μm 线和空间为例,重点是半导体工艺技术作为替代。在典型的排列中。采用半导体制造技术的中间插层,将有源模的高密度布线要求与有机封装基板的低密度能力进行转换。值得注意的是,这种封装方法仍然需要有机封装基质,它的大小和层数都在增加其中一些产品已经开始批量发货。4.3.1. 英特尔 EMIB 嵌入式硅插入器英特尔的酷 i7 8705G 笔记本处理器实际上结合了英特尔的 CPU,一个 AMD 的 GPU 和 HBM 内存在一个单一的 FCBGA 封装体。为了获得最高的性能,GPU 和内存采用倒装芯片,直接安装在附近,并与硅桥芯片互连,在两个芯片之间提供高完整性的信号和电源线。英特尔 CPU 被单独直接放置在 BGA 基板上。4.3.2. 带有 TSV 的硅插入器AMD 提供一系列用于高性能计算应用的 CPU 和 GPU,包括工作站和 Al 处理器。为了解决高速内存访问的需求,内存最好集成在处理器封装体中。在许多情况下,这是通过在相同的高密度封装基板上,将内存芯片翻转到CPU/GPU 芯片旁边来实现的。但在前沿应用中,存储芯片是堆叠在一起的, 随后安装在一个硅插接器上,该插接器也携带处理器芯片。……(报告来源:川财证券)如需报告原文档请登录【未来智库】。

红地毯

高温合金项目可行性研究报告——现代工业装备领域的关键材料

高温合金项目可行性研究报告——现代工业装备领域的关键材料高温合金在军民工业领域运用广泛,是制造发动机以及燃气轮机热端部件的关键材料。国防建设的需求以及国家的大力支持持续推动着高温合金产业的发展,市场前景广阔。一、高温合金简介高温合金是指一般以铁、镍、钴为基,能在大约600℃以上的高温下抗氧化或腐蚀,并能在一定应力作用下长期工作的一类合金。铁基高温合金使用温度一般只能达到700℃左右,多应用于交通运输、石油化工、矿山冶金等领域;钴基高温合金受限于钴元素的开采和使用,尚无法实现大范围的推广应用;镍基高温合金在整个高温合金领域占有特殊重要的地位,可以在高于1000℃的恶劣环境中保持较好的力学性能,因而广泛地用来制造高性能的航空发动机和各种工业燃气轮机的最热端部件。在研发应用中,一般按制备工艺划分成铸造高温合金、变形高温合金和其他几类新型高温合金。其中变形高温合金应用最为广泛,大致占比达70%,铸造高温合金和新型高温合金分别为20%、10%。1、高温合金的分类应用从航空航天向其他工业领域扩展高温合金材料具备优良的耐高温、耐腐蚀、抗疲劳,最初因制造工艺复杂,量产困难,主要应用于航空航天领域。随着技术的发展和产量的提升,逐渐被应用到电力、机械、工业、汽车等领域。据Roskill统计,全球每年消费高温合金材料约30万吨,其中约55%用于航空航天领域,其次是电力领域,占20%。高温合金应用领域高温合金应用领域在航空航天领域,高温合金是制造航空航天发动机热端部件的关键材料。在液体火箭发动机中,高温合金应用比例接近总重量的一半,逐渐呈现出复杂化、薄壁化、复合化、多位一体、无余量的趋势。在先进的航空发动机中,关键的热端承力部件均为高温合金,高温合金用量占发动机总重量的40%-60%以上,发动机的性能水平在很大程度上取决于高温合金材料的性能水平。在民用工业领域,高温合金应用面不断扩大,特别是耐高温耐腐蚀合金在石油化工、玻璃和玻纤以及机械制造等行业的应用有明显的进展。以工业燃气轮机为例,其需求快速增长,除用于发电外,还用于舰船动力、天然气输送的加压站等。此外,纳米材料系列、生物医学材料系列、电子工程用靶材系列等高温合金产品也在不断发展,以满足相关高温的腐蚀环境要求。2、政策支持下我国高温合金快速发展我国高温合金研发起步较国外发达国家晚,在国防建设需要以及国家的大力支持下,经过几代人的努力,我国高温合金已完成了从仿制、改进到创新的转变,合金的耐温性能从低到高,新型材料得以开发,生产工艺不断改进且产品质量不断提高,并建立和完善了我国的高温合金体系。最新出版的《中国高温合金手册》已包含201个合金牌号,可供航空、航天及其他工业部门选用。师昌绪院士将我国高温合金的发展分为三个阶段。第一阶段从1956年至20世纪70年代初,是我国高温合金的创业和起始阶段,由苏联专家指导下炼出的第一炉高温合金GH3030拉开序幕。1960年后,国际形势要求我国必须独立自主的研制和生产主要歼击机发动机所需的各种高温合金材料,该阶段主要成果是仿制前苏联高温合金为主体的合金体系。第二阶段从20世纪70年代中到90年代中期,这是我国高温合金的提高阶段。材料研制全面引入欧美技术,参照国外的技术标准,在生产过程中建立严格的质量管理体系,学习规范质量检测标准。这一阶段,研制成功了多种新型的高温合金,生产工艺技术和产品质量控制达到了一个新的高度。第三阶段是从20世纪90年代中至今这段时间,这是我国高温合金发展的新阶段。该阶段,我国应用和开发出一批新工艺,研制和生产了一系列高性能、高档次的新合金。现在国内已形成了一批具有一定规模的母合金生产厂、锻件热加工厂、精密铸件厂和研究机构。高温合金的升级对于航空航天及其他工业部分的发展都有着重要的意义。特别是在航空航天领域,可以说一代材料一代新型发动机,材料是产业升级的基础。高温合金新材料及先进制备技术的研究,助力航空航天发动机向更高承温、更高性能、更低重量、更高可靠性、更低成本、更易维护等方向发展。为了促进高温合金行业的发展,近年来国家也出台了一系列支持政策。高温合金相关产业政策二、供给不足,行业生态健康我国高温合金产业发展较快,但技术与世界先进水平仍存在差距,并且国内生产能力不足,高端品种尚未实现自主可控,供需缺口较大。高温合金新进入壁垒高,产能增长以现有厂商扩产为主,增速较为缓慢。业内竞争格局良好,主要厂商形成竞合关系。行业特性促使高温合金成为单价高、毛利高品种。1、国内供应存缺口,单价高、毛利高自1956年第一炉高温合金GH3030试炼成功,迄今为止,我国高温合金的研究、生产和应用已经经历了60多年的发展。60年的时间里,我国高温合金从无到有,从仿制到自主创新,取得了不凡的成绩。但目前来看,我国高温合金仍存在供应缺口,且高端品种尚未实现自主可控。关于高温合金的产销量,市场没有统一计算口径。特钢协会数据显示2019年会员企业高温合金钢产量为8499吨。2018年我国高温合金材料年生产量约3.5万吨左右,消费量达5.9万吨。2018年我国高温合金产量约2.2万吨,市场需求量约3.7万吨。总体反映出高温合金市场存在40%左右的供给缺口。因高温合金产品具有很高技术含量,要求一定的技术储备和研发实力,进入壁垒相对较高。高端产品产能增长将主要依靠现有企业产能的扩张,但实际有效产量增长较小,市场缺口短期较难填补。2003-2019年重点优特钢企业高温合金钢产量(吨)同时,我国高温合金材料对进口的依赖度依旧较高。一是因技术相对落后,高端产品未完全国产化。在技术水平上,我国与美国、俄罗斯等国仍有着较大差距。比如在重型燃气轮机、深海石油等应用量大的产业,以及更高性能航空航天发动机等领域,相关高温合金材料产品还没有完全实现国产化,产品依赖进口。高温合金的特性及产业结构促使其价格及毛利始终保持较高水平。以抚顺特钢、钢研高纳、图南股份为例,近三年其高温合金产品均价在12-22万元/吨水平,毛利率保持在30%左右,具体因产品结构、产品附加值高低、下游属于军品或民品客户,原材料价格变动、成材率情况而不同。分公司高温合金销售均价(万元/吨)分公司高温合金毛利率水平(%)2、业内竞合关系为主,进入壁垒高高温合金行业生态健康,企业间主要为竞合关系。一方面因为行业总供给尚不能满足国内需求,企业均以努力实现技术创新、扩大产能、满足市场需求为目标共同发展。另一方面因为高温合金广泛应用于军工领域,自主可控要求下很多对供应商设置了双流水制度。高温合金进入壁垒高,体现在技术壁垒、销售渠道、资金实力等方面。且新进入者往往面临产品成材率低的问题,需要经历较长的时间探索,进行工艺改良,通过经验总结,提升产品成材率。高进入壁垒将使行业未来一段时间内竞争格局仍有望保持良好状态。高温合金材料具有很高的技术含量,特种冶炼、精密铸造等工序均需要技术沉淀,尤其是航空航天类应用产品对质量可靠性、性能稳定性、产品外观尺寸精确性等方面都有着非常苛刻的指标要求,加之后续工艺改良及成材率提升的行业发展要求,都需要长期经验积累,高温合金对企业技术储备、研发实力和人才培养要求很高。2019高温合金相关企业研发支出占比及研发人员占比(%)在销售渠道方面,一是行业存在准入壁垒,高温合金应用于军品相关生产活动必须通过严格审查并取得军工资质;在民用航空发动机、核电装备等领域,也存在相应的资质认证管理体系,生产厂家需要通过获得相关行业准入资质和认证,才能进入市场。二是市场先入优势明显,高温合金主要应用于各种极端恶劣环境下,故对下游客户而言,性能稳定性和质量可靠性是其最重要的考虑因素,高温合金产品通过下游客户系统认证所需时间周期可长达3-5年,因此用户在经过严格的试用程序而选定供应商后,一般不会再轻易更换,后入者打通销售渠道难度大幅增加。在资金方面,高温合金企业前期需投入大量资金购置先进生产设备,且产品研发周期较长,公司需持续投入支持新产品的迭代更新。3、未来三年有万吨产能增量因为高温合金领域新进入者壁垒较高,行业产能增量主要来源于现有企业扩产。近年来,随着下游需求的快速增长,高温合金供不应求,主流厂商纷纷扩建以满足发动机、石化等领域的新增需求,在国家政策导向下国产替代进程加速。但因生产工艺复杂,产品牌号众多,且存在下游认证周期长等问题,实际产量增速或小于产能增速。三、需求放量,市场增长可期我国高温合金需求增长迅速,供需缺口短期难以弥补。发动机领域,军用飞机数量增加,发动机维护以及发动机国产替代工作的推进,高温合金需求量增长明确。燃气轮机国产替代进程不断加速,在海军舰艇建设以及燃气轮机装配比例提升,天然气管网大规模建设以及燃气发电项目增长下相关领域高温合金需求前景巨大。汽车方面,国内汽车产量的提升以及国内涡轮增压车型占比持续提升,高温合金消费量将持续上涨。此外,在航天、核电、石化冶金等领域,高温合金需求也在不断增长,预计2020-2025年间,需求复合增速达7.5%。1、航空发动机需求增长明确在先进航空发动机中,高温合金用量占发动机总重量的40%-60%以上,主要用于燃烧室、导向器、涡轮叶片和涡轮盘四大热端部件,此外还用于机匣、环件、加力燃烧室和尾喷口等部件。发动机的性能水平在很大程度上取决于高温合金材料的性能水平。高推重比、低油耗和高可靠性是航空发动机发展的主要目标,为了提高发动机的推力和效率,要求尽可能提高发动机的涡轮进口温度,数据显示,推重比为10的发动机涡轮进口温度已达1580-1650℃。燃烧室是发动机各部件中温度最高的区域,燃烧室内燃气温度可达1500-2000℃,作为燃烧室壁的高温合金材料需承受800-900℃的高温,局部甚至高达1100℃以上。除需承受高温外,燃烧室材料还应能承受周期性点火启动导致的急剧热疲劳应力和燃气的冲击力。用于制造燃烧室的主要材料有高温合金、不锈钢和结构钢,其中用量最大、最为关键的是变形高温合金。导向器也称为涡轮导向叶片,用来调整燃烧室出来的燃气流向,是涡轮发动机上承受温度最高、热冲击最大的零部件,材料工作温度最高可达1100℃以上,但涡轮导向叶片承受的应力比较低,一般低于70MPa。该零件往往由于受到较大热应力而引起扭曲,温度剧变产生热疲劳裂纹以及局部温度过高导致烧伤而报废,因此导向器材料大多采用精密铸造镍基高温合金。涡轮叶片是涡轮发动机中工作条件最恶劣也是最关键的部件,由于其处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件。涡轮叶片在承受高温的同时要承受很大的离心应力、振动应力、热应力等。其所承受温度低于相应导向叶片50-100℃,但在高速转动时,由于受到气动力和离心力的作用,叶身部分所受应力高达140MPa,叶根部分达280-560MPa,涡轮叶片材料大多也是精密铸造镍基高温合金。涡轮叶片其结构与材料的不断改进已成为航空发动机性能提升的关键因素之一。涡轮盘在四大热端部件中所占质量最大。涡轮盘是航空发动机上的重要转动部件,工作温度不高,一般轮缘为550-750℃,轮心为300℃左右,因此盘件径向的热应力大,特别是盘件在正常高速转动时,由于盘件质量重达几十至几百千克,且带着叶片旋转,要承受极大的离心力作用,在启动与停车过程中又构成周期性的大应力低周疲劳。用作涡轮盘的高温合金为屈服强度很高、细晶粒的变形高温合金和粉末高温合金。在航空发动机领域,随着军机数量增加,发动机维护以及发动机国产替代工作的推进,高温合金需求量有望迎来较快增长。装备费占比持续提升,军机数量稳步上涨。2019年7月国务院新闻办公室发表《新时代的中国国防》白皮书,内容显示我国军费中装备费的占比持续提升,自2012年的36%提升至2017年的41%,军费增加用于加大武器装备建设投入,淘汰更新部分落后装备,升级改造部分老旧装备,研发采购航空母舰、作战飞机、导弹、主战坦克等新式武器装备,稳步提高武器装备现代化水平。2017年装备费增速有所放缓,后期随着军改基本完成,装备采购明显加速,军品订单恢复正常状态。《World Air Forces 2021》数据显示,我国军机数量为3260架,占世界军机总量的6%,2011年来,军机数量复合增长率约为2.6%。装备费增速及在军费中占比情况(%)我国军用飞机数量及增速(架,%)《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》在谈到军队建设目标时,首次提出"确保二〇二七年实现建军百年奋斗目标",这是对既往建军目标与时俱进的充实和具体化,充分体现了党中央立足国家发展和安全战略全局,奋力推进强军事业的战略意志和坚定决心。随着军用飞机数量的增长,对应航空发动机应用高温合金也有望迎来较快增长。此外,考虑到发动机实验、备货需求以及高温端使用寿命有限,存量发动机因飞行训练带来更换和大修需求,预期2020-2025年间,军用航空发动机领域高温合金需求复合增速有望达到6.5%。在民用航空领域,市场空间巨大,但全球市场已发展较为成熟,生产公司主要包括CFM、RR、GE、P&W等欧美企业,竞争格局相对稳定。国内民用航空发动机起步较晚,随着CJ1000商用大涵道比航空发动机关键部件的不断攻克,作为C919的国产替代发动机,未来有望成为国内民用航发批量应用的起点,形成高温合金新的增长点。燃气轮机发展前景巨大燃气轮机作为动力装置具有体积小、效率高、污染低、功率范围广等优点,广泛用于工业发电、舰船、石油及天然气管路输送、供热、矿井通风等领域。工业燃气轮机按功率等级划分大体分为微型、轻型、中型、重型4个等级。燃气轮机的效率和可靠性很大程度上取决于热端部件的技术水平,高温合金主要用于涡轮叶片、燃烧室和涡轮轮盘三大核心部件。以重型燃气轮机为例,目前形成了以美国GE、德国西门子、日本三菱重工为主的三大巨头高度垄断的局面,主流机型涡轮进口温度均在1350℃以上,热端部件的材料几乎均选用高温合金。燃气轮机涡轮叶片长时间连续工作在高温、易腐蚀和复杂应力下,与航空发动机涡轮叶片相比,对耐久性、抗腐蚀性要求更高。由于高度的合金化使得高温合金塑性降低难于锻压加工,同时,气冷技术需要的内腔形状复杂的叶片只有采用铸造技术才能做到,涡轮叶片材料由锻造合金向铸造合金发展。燃烧室是燃气轮机承受温度最高的部件,燃烧室材料应具有足够的高温机械强度、良好的抗热疲劳和抗氧化性、较高的高温高周疲劳强度及蠕变强度。从工艺看,燃烧室材料还需具有非常好的成形性能及焊接性能,焊后热处理开裂的倾向性要小。为了满足以上工况和工艺要求,燃烧室材料通常采用镍基高温合金。燃气轮机涡轮轮盘直径是航空发动机的3-6倍。涡轮轮盘轮缘长期工作在550-600℃,而轮盘中心工作温度则降至450℃以下。不同部位的温差造成了轮盘的径向热应力非常大,轮盘外缘榫齿在燃气轮机起停过程中会承受较高的低周疲劳载荷作用。故涡轮轮盘的材料在使用温度下应具有更高的抗拉强度和屈服强度,为此,除了合金钢和耐热钢,涡轮轮盘在选材上也应考虑选择具有良好综合性能的变形高温合金。在军用领域,海军舰艇建设以及燃气轮机装配比例的提升将带来高温合金的增量。美、英、苏、德、日等国在20世纪70年代以后建造的水面舰艇的主动力绝大部分采用全燃气轮机动力装置或柴油机-燃气轮机联合动力装置。40MW级燃气轮机用于万吨级驱逐舰、两栖攻击舰后续舰的综合电力推进系统原动机;20MW级燃气轮机用于万吨级驱逐舰及其后续舰、6000吨级驱逐舰、3000吨级护卫舰的机械推进主机或综合电力系统电站原动机;10MW级燃气轮机用于气垫登陆艇等特种和小型水面舰艇的综合电力系统电站原动机。我国燃气轮机技术相对落后。当前,我国国产舰船用燃气轮机已经完成国产化批产阶段,有望在我国未来大型护卫舰、大型驱逐舰和新型两栖登陆舰等水面舰艇上广泛引用。在民用领域,由于我国"西气东输"、"北气南下"和沿海经济发达地区能源结构调整,以及分布式能源发展的需要,国内燃气轮机作为中大功率天然气管道增压中途中最广泛的驱动机,市场需求旺盛,随着国产替代进程的加速,高温合金需求有望迎来快速爆发。2017年国家发改委及国家能源局印发《中长期油气管网规划》提出到2020年全国油气管网规模达到16.9万公里,其中天然气管道10.4万公里;到2025年规模达到24万公里,其中天然气管道16.3万公里的发展目标,则未来5年复合增速达到9.4%。2015年底,全国天然气管网为6.4万公里,2018年底,干线管道总里程达7.6万公里,复合增速5.9%,慢于规划目标。2019年底,国家管网集团正式成立,从事油气干线管网及储气调峰等基础设施的投资建设和运营,预期随着我国天然气用量的快速攀升,天然气管网建设速度将稳步提升。我们假设未来五年我国天然气主干管网建设速度每年提高1.4%,在2025年实现天然气管道16.3万公里的发展目标。从新疆轮南气田到上海市区,全长4000km,沿线约40个增压站。假设平均每100公里需要1个增压站,每个增压站平均装备1台燃气轮机,燃气轮机单体重量25吨,其中高温合金用量占比40%,成材率30%,则对应2025年高温合金需求达7333吨,复合增速达25.7%。重型燃气轮机市场的增量来源于天然气供应的增长,燃气发电项目增长带动高温合金需求。燃气发电具有能源转换效率高、污染物排放少、启停迅速、运行灵活等特点。2019年9月,国家能源局印发《国家能源局关于将华能南通电厂燃气轮机发电项目等24个项目列入第一批燃气轮机创新发展示范项目的复函》,明确就22个燃气轮机型号和2个运维服务项目开展示范,示范项目聚焦长期制约我国燃气轮机产业发展的热部件等关键核心技术装备,预期随着各项技术的突破,我国重型燃气轮机国产化率有望稳步提高。据东方电气集团募集说明书,近几年,我国市场每年将新增15个大型天然气发电项目,相当于新增30台燃气轮机。三菱重工M701F燃气轮机主体重415吨,假设大型燃气轮机单机重量400吨,其中高温合金用量占比20%,则重型燃气轮机对应年高温合金用量约2400吨。汽车用高温合金持续上涨车用高温合金主要应用于汽车涡轮增压器。涡轮增压技术是提高发动机效率、降低油耗、减少废气排放的重要手段。增压涡轮是增压器的核心部件,其耐受温度和使用寿命决定了整个增压器的工作温度和稳定性。随着增压器的转速提高、体积减小,其使用温度逐渐升高,目前排气温度已达1000℃以上,世界各国普遍将增压涡轮材料由耐热钢升级为铸造镍基高温合金,国内广泛应用K213、K418、K419、K4002等牌号合金。随着国内汽车产量的提升以及国内涡轮增压车型占比持续提升,高温合金消费量将持续上涨。汽车产量方面,2020年,疫情的爆发加速了汽车产业产销量触底的过程。随着相关刺激政策的推出,行业消费情绪回暖,汽车产销量稳步提升。4月,在2019年相对低基数作用下,汽车单月产销量恢复正增长,并保持较快增速。1-11月,汽车累积产量2237.2万辆,同比小幅下降3%。从长期来看,我国汽车行业发展空间巨大,从千人拥有量数据来看,2019年我国汽车千人拥有量为173,在世界银行发布的全球20个主要国家千人汽车拥有量中排名第17位,数量远低于美国的837、澳大利亚的747、意大利的695等。涡轮增压车型渗透率方面,据盖世汽车研究院,随着近年市场规模的增长,中国乘用车涡轮增压器渗透率不断提高,2016年到达32%,预计2020年渗透率将达到48%。在节能减排的发展趋势下,未来渗透率有望继续提升。我们假设未来五年我国汽车产量年增速为2%,涡轮增压器渗透率每年提升1%。据图南股份招股说明书,每万辆汽车涡轮增压器高温合金用量约为3.5吨,则对应2025年高温合金需求量达5182吨,复合增速达4.0%。核电建设稳步推进在核电装备制造业中,高温合金材料主要应用于承担核反应工作的核岛内。核电装备中主要使用高温合金的部件包括燃料机组、控制棒驱动机构、压力容器、蒸发器以及堆内构件、燃料棒定位格架、高温气体炉热交换器等。核电核准稳步推进,有望带动核电电源建设投资增长,进而拉动高温合金消费。日本福岛核事故发生后,2016-2018年我国核电核准进入停滞状态,直到2019年7月山东荣成、福建漳州和广东太平岭核电项目核准开工,标志着核电审批正式重启。2020年9月国务院常务会议核准海南昌江核电二期工程和浙江三澳核电一期工程,并指出积极稳妥推进核电项目建设,是扩大有效投资、增强能源支撑、减少温室气体排放的重要举措。据图南股份招股说明书,一座100万千瓦的核电机组消耗500吨高温合金。2020年6月,中国核能行业协会发布《中国核能发展报告(2020)》提出,"十四五"及中长期,核电建设有望按照每年6-8台持续稳步推进,预计2020年底,我国在运核电机组总装机容量达5200万千瓦,在建核电机组装机容量1900万千瓦以上;到2025年,在运核电装机达到7000万千瓦,在建3000万千瓦。假设未来每年新增500万千瓦核电机组,则预计带来的年高温合金需求量为2500吨。高温合金项目可行性研究报告编制大纲第一章总论1.1高温合金项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1高温合金项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:关联报告:高温合金项目申请报告高温合金项目建议书高温合金项目商业计划书高温合金项目资金申请报告高温合金项目节能评估报告高温合金行业市场研究报告高温合金项目PPP可行性研究报告高温合金项目PPP物有所值评价报告高温合金项目PPP财政承受能力论证报告高温合金项目资金筹措和融资平衡方案

千人斩

新材料专题报告之湿电子化学品行业深度研究

如需报告请登录【未来智库】。1、 湿电子化学品是重要的电子信息材料之一1.1、 湿电子化学品的核心要素是超净、高纯及功能性 湿电子化学品是电子行业湿法制程的关键材料。湿电子化学品属于电子化学品 领域的一个分支,是微电子、光电子湿法工艺制程(主要包括湿法蚀刻、清洗、显 影、互联等)中使用的各种液体化工材料。超净高纯试剂是在通用试剂基础上发展 起来的纯度最高的试剂,其杂质含量较优级试剂低几个数量级。湿电子化学品是对 “电子级试剂”、“超净高纯化学试剂”更为合理准确的表达。国内的超净高纯试剂, 在国际上通称为工艺化学品(Process Chemicals), 在美国、欧洲和我国台湾地区称 为湿化学品(Wet Chemicals),是指主体成分纯度大于 99.99%,杂质离子和微粒数 符合严格要求的化学试剂,其纯度和洁净度对电子元器件的成品率、电性能和可靠 性有十分重要的影响。按照组成成分和应用工艺不同,湿电子化学品可分为通用性和功能性湿电子化 学品。通用湿电子化学品以超净高纯试剂为主,一般为单组份、单功能、被大量使 用的液体化学品,按照性质划分可分为:酸类、碱类、有机溶剂类和其他类。酸类 包括氢氟酸、硝酸、盐酸、硫酸、磷酸等;碱类包括氨水、氢氧化钠、氢氧化钾等; 有机溶剂类包括甲醇、乙醇、异丙醇、丙酮、乙酸乙酯等;其他类包括双氧水等。 功能湿电子化学品指通过复配手段达到特殊功能、满足制造中特殊工艺需求的复配 类化学品,即在单一的超净高纯试剂(或多种超净高纯试剂的配合)基础上,加入 水、有机溶剂、螯合剂、表面活性剂混合而成的化学品。例如剥离液、显影液、蚀 刻液、清洗液等。由于多数功能湿电子化学品是复配的化学品,是混合物,它的理 化指标很难通过普通仪器定量检测,只能通过应用手段来评价其有效性。随着电子元器件制作要求的提高,相关行业应用对湿电子化学品纯度的要求也 不断提高。为了适应电子信息产业微处理工艺技术水平不断提高的趋势,并规范世 界超净高纯试剂的标准,国际半导体设备与材料组织(SEMI)将湿电子化学品按金 属杂质、控制粒径、颗粒个数和应用范围等指标制定国际等级分类标准。湿电子化 学品在各应用领域的产品标准有所不同,光伏太阳能电池领域一般只需要 G1 级水平; 平板显示和 LED 领域对湿电子化学品的等级要求为 G2、G3 水平;半导体领域中, 集成电路用湿电子化学品的纯度要求较高,基本集中在 G3、G4 水平,分立器件对 湿电子化学品纯度的要求低于集成电路,基本集中在 G2 级水平。一般认为,产生集 成电路断丝、短路等物理性故障的杂质分子大小为最小线宽的 1/10。因此随着集成 电路电线宽的尺寸减少,对工艺中所需的湿电子化学品纯度的要求也不断提高。从 技术趋势上看,满足纳米级集成电路加工需求是超净高纯试剂今后发展方向之一。1.2、 湿电子化学品行业:上承基础化工,下接电子信息 1.2.1、 湿电子化学品位于电子信息产业链的前端 湿电子化学品位于电子信息产业偏中上游的材料领域。湿电子化学品上游是基 础化工产品,下游是电子信息产业(信息通讯、消费电子、家用电器、汽车电子、 LED、平板显示、太阳能电池、军工等领域)。湿电子化学品的生产工艺主要采用物 理的提纯技术及混配技术,将工业级的化工原料提纯为超净高纯化学试剂,并按照 特定的配方混配为具有特定功能性的化学试剂。湿电子化学品行业是精细化工和电 子信息行业交叉的领域,其行业特色充分融入了两大行业的自身特点,具有品种多、 质量要求高、对环境洁净度要求苛刻、产品更新换代快、产品附加值高、资金投入 量大等特点,是化工领域最具发展前景的领域之一。湿电子化学品对包装、运输的要求极高,行业具有一定的区域性。湿电子化学 品大多属于易燃、易爆、强腐蚀的危险品,所以不仅要求产品在贮存的有效期内杂 质及颗粒不能有明显的增加,而且要求包装后的产品在运输及使用过程中对环境不 能有泄露的危险。目前最广泛使用的材料是高密度聚乙烯(HDPE)、四氟乙烯和氟 烷基乙烯基醚共聚物(PFA)、聚四氟乙烯(PTFE)。 HDPE 对多数超净高纯试剂的 稳定性较好,而且易于加工,并具有适当的强度,因而它是超净高纯试剂包装容器 的首选材料,HDPE 的关键是与大多数酸、碱及有机溶剂都不发生反应,也不渗入 聚合物中。对于使用周期较长的管线、贮管、周转罐等,可采用 PFA 或 PTFE 材料 做内衬。超净高纯试剂在运输过程中极易受污染,同时对运输工具也有较高要求, 运输成本也较高。为了保证稳定供应高品质湿电子化学品,湿电子化学品生产企业 往往围绕下游制造业布局,以减少运输距离。湿电子化学品行业的区域性决定了其 发展水平与该地区的电子产业发展水平呈正相关。“生产者-使用者-废液处理者”构成湿电子化学品闭环交易新模式。湿电子化学 品的闭环交易模式在国外早有应用,通过引入高水平废液再生提炼纯化商,一方面 解决了化学品使用者的废液处理问题,另一方面也能相应降低化学品生产者的生产 成本,是较为先进的生产模式。随着国内液晶产业的发展,国内液晶面板厂商也开 始广泛采用该模式,如“江化微-中电熊猫-默克电子”的合作,江化微向中电熊猫供 应正胶剥离液,苏州默克将使用后的废液进行回收提纯处理,江化微采购该类回收 液,根据技术和功能性要求,添加部分新液后进行纯化、混配,实现再生利用、绿 色生产。江化微的闭环模式主要是由产品特点所决定:正胶剥离液为混配产品,生 产工艺具有独特性,因此即使是废液回收处理后,由于内部配比关系,回收液通过 再加工也只能被原生产企业和最终客户循环使用。1.2.2、 高技术壁垒赋予湿电子化学品较高的附加值 源于大宗:湿电子化学品的成本构成中原材料占比较高。湿电子化学品的原材 料种类较多,主要包括氢氟酸、硫酸、硝酸、盐酸、氢氧化钾、氢氧化钠、有机溶 剂等基础化工产品以及其他各类添加剂。湿电子化学品企业的成本构成呈现出“料 重工轻”的结构特点,直接材料成本占营业成本的比重普遍在 70%-90%,因此原材 料价格波动会对湿电子化学品的生产成本有较大影响。我国化学工业经过多年发展, 已建立了较为完善的化工工业体系,这使得我国基础化工原料品种齐全。从量上看, 湿电子化学品对上游原材料的采购占上游行业总体的供给比例非常小,上游原材料 供给较为充足。从价格上分析,基础化工受到上游基础原料产业如原油、煤炭及采 矿冶金、粮食等行业的影响,近几年价格有所波动。总体上看,湿电子化学品价值 占其下游电子产业链价值比重较低,同时产品技术等级越高,则产品的附加值越高, 企业的议价能力越强,所以原材料对湿电子化学品企业盈利水平的影响可控。不同于大宗:湿电子化学品的高附加值源于精密纯化与混配技术。湿电子化学 品是化学试剂中对纯度要求最高的领域,对生产的工艺流程、生产设备、生产的环 境控制、包装技术都有非常高的要求,具备较高的技术门槛。与工业级化学品的合 成工艺不同,湿电子化学品在整个生产过程中主要工艺为纯化工艺和配方工艺,该 两大关键技术工艺基本为精密控制下的物理反应过程,较少涉及化学反应过程,不存在高污染、高耗能的情况。同时,湿电子化学品的工艺水平和产品质量直接对电 子元器件的功能构成重要影响,进而通过产业传导影响到终端整机产品的性能,因 此湿电子化学品具有附加值高的特点。以江化微为例,其超净高纯硝酸的平均售价 一般为 2,300-2,600 元/吨,而工业级纯化原料的价格一般为 1,200-1,500 元/吨,提纯 处理后的产品价值量显著提升。功能湿电子化学品的生产工艺更为复杂,除了提纯 外还有混配的过程,对产品的配方、制作参数的选择均十分考验生产商的技术实力 与生产经验。我们分别比较了江化微和润玛股份单酸、混酸产品的毛利率,可见混 配产品与单一纯化产品相比具备更高的盈利水平。(1)纯化工艺的核心是提纯技术和分析检测技术 分离纯化技术主要用于去除杂质,对化学品进行分离提纯以得到合格产品的过 程,其关键是针对不同产品的不同特性采取对应的提纯技术。目前国内外制备超净 高纯试剂常用的提纯技术主要有精馏、蒸馏、亚沸蒸馏、等温蒸馏、减压蒸馏、低 温蒸馏、升华、气体吸收、化学处理、树脂交换、膜处理等技术。不同的提纯技术 适应于不同产品的提纯工艺,有的提纯技术如亚沸蒸馏技术只能用于制备量少的产品,而有的提纯技术如气体吸收技术可以用于大规模的生产。检测分析技术是超净 高纯试剂质量控制的关键技术,根据不同的检测需要可以分为颗粒分析测试技术、 金属杂质分析测试技术、非金属分析测试技术等,目前分别发展到激光光散法、电 感耦合等离子体—质谱法(ICP-MS)、离子色谱法。(2)混配工艺的关键在于配方,需要长期经验积累 混配工艺是将纯化成品经过检测后,再进行过滤、精密混配的工艺过程,混配 工艺是满足下游客户对湿电子化学品功能性要求的关键工艺之一。混配类产品的核 心在于配方,装置通用性强,满足一定条件下,产能可互相通用转换。而配方的形 成需要企业有丰富的行业经验,通过不断的调配、试制及测试才能完成,甚至还需 要对客户的技术工艺进行实地调研,才能实现满足客户需要的功能性产品的研发。 因此混配工艺高度依赖企业的技术和经验。1.2.3、 湿电子化学品盈利差异体现在产品等级不同 湿电子化学品跟随下游电子信息产业快速更新换代。湿电子化学品作为电子行 业的配套行业,与下游行业结合紧密,素有“一代材料、一代产品”之说。湿电子 化学品下游应用行业主要有半导体、光伏太阳能电池、LED、平板显示等,下游应 用行业的未来发展趋势对湿电子化学品行业有较大的影响。由于电子产业发展速度 非常快,产品更新换代也很快。新产品的工艺特点和技术要求都会发生变化,这就 要求湿电子化学品与之同步发展,以适应其不断推陈出新的需要。以集成电路制造 为例,根据摩尔定律,集成电路上可容纳的元器件的数目,约每隔 18 个月便会增加 一倍,性能也将提升一倍。集成电路性能与半导体制程紧密联系,应用于集成电路 的湿电子化学品从 G2 等级发展至 G5 等级。产品等级与应用领域对湿电子化学品的盈利能力有较大影响。通用湿电子化学 品的定价模式主要为市场定价,高等级产品和功能湿电子化学品的议价能力较强, 以国际价格为参考并根据企业自身研发成本进行定价。成本方面,主要原材料均为 大宗商品,价格公允透明。因此,国内湿电子化学品厂商的盈利差异主要体现在产 品等级与应用领域的不同。目前,我国湿电子化学品应用领域主要分为三大类,即 半导体市场、光伏市场、平板显示器市场。整体而言,半导体市场对湿电子化学品 生产商的技术实力与生产经验要求最高,故该领域竞争激烈程度相对较低,毛利率 最高。光伏太阳能领域对产品纯度要求低,进入壁垒低,毛利率较低。以江化微为 例, 2019年半导体芯片、显示面板、太阳能电池三大市场的产品毛利率分别为41.47%、 23.58%、27.34%,受产品竞争加剧以及面板价格下滑的影响,显示面板用湿电子化 学品的利润空间有所压缩,毛利率较 2018 年减少 6.27%。认证采购模式使湿电子化学品具备一定的客户壁垒。湿电子化学品有技术要求 高、功能性强、产品随电子行业更新快等特点,且产品品质对下游电子产品的质量 和效率有非常大的影响。因此,下游电子元器件生产企业对湿电子化学品供应商的 质量和供货能力十分重视,常采用认证采购的模式,需要通过送样检验、技术研讨、 信息回馈、技术改进、小批试做、大批量供货、售后服务评价等严格的筛选流程, 而在大尺寸面板,半导体集成电路等高端领域要求更加严格。同时,湿电子化学品 尽管在下游电子元器件中成本占比很小,因此一旦与下游企业合作,就会形成稳定 的合作关系,这会对新进入者形成较高的客户壁垒。 2、 三大应用领域齐发力,湿电子化学品需求持续增长2.1、 半导体:大尺寸晶圆厂投产拉动湿电子化学品需求 2.1.1、 湿电子化学品在晶圆加工中充当清洗和蚀刻功效 湿电子化学品主要有清洗和蚀刻两大类用途。湿电子化学品在半导体制造领域 的应用,主要在集成电路和分立器件制造用晶圆的加工方面,还包括晶圆加工前的 硅片加工以及后端的封装测试环节。集成电路的制造工艺十分复杂,大体上可以分 为光刻(Lithograph)、 蚀刻(Etch)、氧化(Oxidation)、薄膜(Thin film)、化学机械平坦化研磨(CMP)、扩散(DIFF)等几个部分,其中光刻、蚀刻以及辅助性的清 洗/表面预处理工序均需要湿电子化学品参与,具体包括曝光后光刻胶的剥离、灰化 残留物的去除、本征氧化物的去除,还有选择性蚀刻。(1)清洗在集成电路生产中,约有 20%的工序与晶圆清洗有关。集成电路制造过程中的 晶圆清洗是指在氧化、光刻、外延、扩散和引线蒸发等工序之前,采用物理或化学 的方法去除硅片表面的杂质,以得到符合清洁度要求的硅片的过程。晶圆表面的污 染物,如颗粒、有机杂质、金属离子等以物理吸附或化学吸附的方式存在于硅片表 面或自身氧化膜中,晶片生产每一道工序存在的潜在污染,都有可能导致缺陷的产 生和器件的失效,晶圆清洗要求既能去除各类杂质,又不损坏套片。晶圆清洗不同 工序的清洗要求和目的也是各不相同的,这就必须采取各种不同的清洗方法和技术 手段,以达到清洗的目的。湿法化学清洗技术在硅片表面清洗中仍处于主导地位。半导体硅片清洗可分为 物理清洗和化学清洗,化学清洗又可分为湿法化学清洗和干法化学清洗。尽管干法 工艺不断发展,且在某些应用中具有独特的优势,但是大多数晶圆清洗工艺还是湿 法,即利用各种化学试剂和有机溶剂与吸附在被清洗物体表面上的杂质及油污发生 化学反应或溶解作用,通常在批浸没或批喷雾系统内对晶圆进行处理,当然还包括 日益广泛使用的单晶圆清洗方法。目前湿法化学清洗技术的趋势是使用更稀释的化 学溶液,辅之以某种形式的机械能,如超声波或喷射式喷雾处理等。晶圆湿法化学 清洗中所用湿法化学品根据工艺不同及加工品质要求的差异,所用的湿法化学品的 品种也不同。一般将充当晶圆清洗作用的湿法化学品其划分为四类品种,即碱性类 溶液、酸性类溶液、SPM 清洗剂、稀释 HF 清洗剂(DHF)。(2)光刻和蚀刻光刻和蚀刻占芯片制造时间的 40%-50%,占制造成本的 30%。在集成电路的 制造过程中,晶圆厂需要在晶圆上做出极微细的图案,而这些微细图案最主要的形 成方式是使用光刻和蚀刻技术。光刻是利用照相技术将掩膜板上图形转移到晶片上 光刻胶层的过程,包括基片前处理、涂胶、前烘、曝光、后烘、显影等步骤。蚀刻 是继光刻之后的又一关键工艺,将光刻技术所产生的光阻图案,无论是线面或是孔 洞,准确无误地转移到光阻底下的材质上以形成整个积体电路所应有的复杂架构。光刻工序中,基片前处理、匀胶、显影和剥离步骤需要使用湿电子化学品。光 刻所涉及到的光刻胶配套试剂包括用于光刻胶稀释用溶剂、涂胶前用于基片表面处 理的表面处理剂(如六甲基二硅胺烷)、曝光之后的显影剂(四甲基氢氧化铵水溶液)、 去除基片上残余光刻胶的去胶剂(包括硫酸、过氧化氢、N-甲基吡咯烷酮及混合有 机溶剂组成的去胶剂、剥离液等)。蚀刻技术可大略分为湿式蚀刻和干式蚀刻两种,湿式蚀刻技术是最早发展起来 的,目前还是半导体制造中得到广泛应用的蚀刻技术。湿式蚀刻通过特定的溶液与 需要蚀刻的薄膜材料发生化学反应,除去光刻胶未覆盖区域的薄膜,其优点是操作 简便、成本低廉、用时短以及高可靠性,选择合适的化学试剂,湿式蚀刻相比干式 蚀刻具有更高的选择性;湿式蚀刻的缺点是存在侧向腐蚀(钻蚀)的现象,进而导 致图形线宽失真。整体而言,湿式蚀刻因其可精确控制薄膜的去除和对原材料的低 损耗,在今后很长一段时间将无法取代。湿式蚀刻的机制,一般是利用氧化剂将蚀 刻材料氧化,再利用适当的酸将氧化后的材料溶解于水中。另外,为了让蚀刻的速 率延长湿电子化学品的使用时间,常会在蚀刻液中加入活性剂及缓冲液来维持蚀刻 溶液的稳定。湿式蚀刻在半导体制程,可用于硅的蚀刻(多采用混合酸蚀刻液,混 合酸由氢氟酸、硝酸、醋酸组成)、二氧化硅的蚀刻(多采用氟化铵与氢氟酸的混合 液)、氮化硅的蚀刻(多用磷酸蚀刻)、金属(Al、Al-Si)蚀刻(常采用磷酸+硝酸+ 醋酸蚀刻液)、有机材料蚀刻(常采用四甲基氢氧化铵液)。湿法蚀刻和湿法清洗从本质和原理来看有相同之处。从本质来讲,选用的化学 药液的种类和浓度以及应用的场合决定了到底是蚀刻还是清洗。一般而言强酸强碱 用于蚀刻,如高浓度氢氟酸(49%),磷酸(70%)等。低浓度酸碱用于清洗,如水 和氢氟酸体积比为 500: 1 的混合溶液,低浓度氨水和双氧水混合液等。从原理上讲, 湿法清洗也就是轻微的湿法蚀刻。以传统的 RCA 清洗为例,在清洗过程中晶圆表面材料会被氨水腐蚀掉一部分,然后通过电性排斥的原理去除污染颗粒,从而达到清 洗晶圆表面的目的。机台设备方面,湿法蚀刻和清洗均可分为槽式蚀刻(清洗)和 单片独刻(清洗),槽式机台一次性能处理 50 片晶圆,产量较大,它采用浸泡的方 式,整个过程中晶圆不断旋转。槽式蚀刻(清洗)的优点是湿电子化学品消耗较低, WPH(wafer per hour)高,蚀刻均匀性较好。2.1.2、 2020 年国内半导体用湿电子化学品需求量 45 万吨 近两年中国大陆晶圆厂进入投产高峰期。随着我国经济结构调整,新兴产业, 计算机、消费电子、通信等产业规模将持续增长,大大拉动了对上游集成电路需求, 同时,国家信息安全战略层面不断加大对集成电路产业的政策支持力度,我国半导 体市场持续快速增长。2017 年以来,中国大陆晶圆厂进入投产高峰期,根据中国半 导体行业协会数据,2019 年国内 IC 制造业产值突破 2,000 亿元,近五年复合增速达 24.28%。2018 年国内 12 英寸、8 英寸、6 英寸晶圆平均产能分别为 80.4 万片/月、 86.4 万片/月、73.8 万片/月,中国电子材料协会预计,随着多座半导体十二英寸厂投 产,2019 年国内 12 英寸晶圆平均产能将达到 127.5 万片/月,2020 年国内 12 英寸晶 圆平均产能将达到 150 万片/月。12 英寸晶圆加工主导半导体用湿电子化学品需求。12 英寸晶圆面积是 8 英寸晶 圆的两倍,但其制造过程中使用的湿电子化学品达 239.82 吨/万片,是 8 寸晶圆消耗 量的 4.6 倍,6 寸晶圆消耗量的 7.9 倍,我们测算 2018 年我国 6 英寸及以上晶圆生产 中消耗各类湿电子化学品总量约为 28.27 万吨,其中 12 英寸的半导体晶圆生产线消 耗湿电子化学品 20.98 万吨,约占总消耗量的 74.22%。如果再加上 6 英寸以下半导 体晶圆生产线所消耗的湿电子化学品,以及半导体晶圆加工前的硅片加工用湿电子 化学品,我们预计 2018 年我国半导体生产所需湿电子化学品超过 30 万吨。硫酸、双氧水是半导体晶圆加工中需求量最大的两个品种。从具体产品种类看, 2018 年我国晶圆加工用硫酸、双氧水、氨水、氢氟酸、硝酸的消耗量分别为 8.88 万 吨、8.11 万吨、2.29 万吨、1.56 万吨、1.10 万吨,用量最大的硫酸、双氧水主要用 于前道工序的清洗;功能湿电子化学品中,显影液、蚀刻液、剥离液的用量分别为 2.91 万吨、1.52 万吨、0.47 万吨,显影液主要为四甲基氢氧化铵显影液。2020 年国内半导体行业湿电子化学品需求量有望达 45 万吨。半导体产业规模在国 内继续保持快速增长,对湿电子化学品的需求也将保持较高景气。2018-2020 年我国 新增 11 条 12 英寸晶圆生产线和 5 条 8 英寸晶圆生产线, 2020 年国内 12 英寸晶圆产 能将达到 150 万片/月,较 2018 年提升近 70 万片/月,按照 80%的产能利用率,我们 测算新增 12 英寸晶圆产量会带来湿化学品需求增量 16.02 万吨,再加上其他尺寸晶 圆扩产以及硅片加工的需求,我们预计 2020 年半导体行业对湿电子化学品的需求量 约为 45 万吨,并且未来三年将保持 15%以上的增速。制程节点的突破将对湿电子化学品等级提出更高要求。光刻工艺一直是现代集 成电路领域最大的难题,在 1965 年摩尔定律提出后,半导体产业一直以 18 个月为 周期升级半导体工艺,节点制程从 1000 nm 演变到了如今的 7 nm,2019 年三星发布 了新一代 3 nm GAA(闸极全环),台积电宣布正式启动 2 nm 工艺的研发。因此晶圆 代工厂在选择湿电子化学品时,会对其纯度提出更高要求。目前,8 英寸晶圆生产使 用的是 G3、G4 等级湿电子化学品,12 英寸晶圆由于加工方式的改变,对湿电子化 学用量大幅增加,并对湿电子化学品的等级提出更高的要求,普遍需要 G4-G5 等级。 随着集成电路制程节点的突破,G4、G5 高等级湿电子化学品需求占比将逐渐升高。 而国内湿电子化学品达到国际标准且具有一定生产量的 30 多家企业中,技术水平多 集中在 G3 以下(国产化率 80%),G3 及以上的湿电子化学品国产化率仅约为 10%。2.2、 平板显示:大陆面板产业崛起带动湿电子化学品需求增长 2.2.1、 湿电子化学品用于面板制造的显影、蚀刻、清洗等工序 薄膜晶体管是LCD和AMOLED中的重要部件。面板显示行业中两大主流技术, TFT-LCD 和 AMOLED,其制造过程均可分为三大阶段:前段阵列工序(Array)、中 段成盒工序(Cell)以及后段模块组装工序(Mole), 薄膜晶体管(TFT)在两大 显示技术中均发挥了重要的作用。TFT 在 LCD 中充当电路开关的作用,用来控制液 晶显示;AMOLED 全称主动矩阵有机发光二极体,TFT 就是这个“主动矩阵”,即 用晶体管控制的开关矩阵。一片表面平滑、没有任何杂质的玻璃基板,制成可用的 薄膜电晶体,需要重复清洗、镀膜、上光阻、曝光、显影、蚀刻、去光阻等过程, 即 Array 制程。相较于传统非晶硅(a-Si)TFT-LCD 的 Array 制程,OLED 采用低温 多晶硅(LTPS) TFT 作为基板,因此其具体工序及所用湿电子化学品种类有所差异。湿电子化学品主要应用于显示面板制造中Array制程的显影、光刻(蚀刻-剥离) 、 清洗工序。显示面板的前段 Array 制程与晶圆加工相似,不同的是 Array 将薄膜晶体 管制作于玻璃上,而非硅晶圆上。光刻技术是 Array 制程中最为核心的内容,通过带 有目标图形的掩模版对涂有光刻胶的 ITO 玻璃进行曝光,受光部分可经显影液溶解,再将露出的ITO膜层去除并剥离多余的光刻胶,便能得到带有目标图形的ITO玻璃。 湿电子化学品是面板制造中关键的基础材料,基板上颗粒和有机物的清洗、光刻胶 的显影和去除、电极的蚀刻等工序都需要特定的湿电子化学品的参与。(1)清洗面板制造过程中,会经过多次玻璃基板、镀膜玻璃清洗工序,需要湿电子化学 品的参与。如所使用的玻璃基板在受入前使用湿电子化学品对其清洗干净;在溅镀 ITO 导电膜之前的清洗加工;在涂敷光刻胶等之前都要采用湿电子化学品对玻璃基 板进行清洗,以保证对微小颗粒以及所有的无机、有机污染物清除干净,达到所需 要的洁净精度的要求。清洗工序贯穿于 Array 的整个制程过程,对平板显示的成品率 有十分重要的影响。(2)显影光刻胶显影,即通过显影液将经过曝光部分的光刻胶溶解,从而将图形从光罩 转移到光刻胶涂层上。常用的显影液有四甲基氢氧化铵(TMAH)、氢氧化钾(KOH) 等,最常用的是 TMAH,它的纯度高,金属离子含量低,显影清洗后基本不留金属 痕迹,显影效果也非 KOH 所能比。杭州格林达是国内显示面板显影液的主要生产供 应厂商,其电子级四甲基氢氧化铵(TMAH)产品在全球市场约占 25%的份额。(3)蚀刻蚀刻工艺分为两种,干法蚀刻和湿法蚀刻,面板制作多采用湿法蚀刻。湿法蚀 刻指的是利用湿电子化学品通过化学反应进行蚀刻的方法。主要包括 Mo/Al 蚀刻液 (又称铝蚀刻液)、Cu 蚀刻液、ITO 蚀刻液三种。Mo/Al 蚀刻液用于 Array 工艺中钼 /铝金属层的蚀刻,主要组分是磷酸、硝酸、醋酸及添加剂(硝酸钾、氯化钾)。Cu 蚀刻液是由双氧水加添加剂构成的,用在铜电极存在的面板对铜金属层的蚀刻工序 中,这是一种较新的制造工艺,京东方、中电熊猫、华星光电已有使用铜电极的高 世代线投产,使用的也是铜蚀刻液。ITO 蚀刻液用于面板导电膜氧化铟锡(ITO)的 蚀刻,目前,市场上的 ITO 蚀刻液主要为草酸系和无机酸锡,无机酸系一般是硝酸 (或醋酸)、硫酸、添加剂和水的混合溶液。(4)剥离TFT-LCD 制作用的剥离液,是用于去除金属电镀或蚀刻加工完成后的光刻胶和 残留物质,同时防止对下面的衬底层造成损坏,剥离液的配方还必须符合剥离工艺。TFT-LCD 面板剥离液以有机溶剂型为主,主要成分是 DMSO 和 MEA。但有机溶剂 污染大、成本高,水系剥离液前景更加广阔。江化微已经自主研发出了水系剥离液, 剥离效果良好,达到了国外大公司产品水平,目前已大量使用在国内中小尺寸及高 世代面板 G6 线上。(5)面板薄化轻薄是显示器发展的主流趋势,高世代生产线相继投入到薄型化产品的生产中。 其中单片玻璃的厚度从流行的 0.7t、0.63t 逐步薄化为 0.5t、0.4t 甚至 0.3t 以下的玻璃 基板生产的产品都已得到了生产。玻璃基板的薄化工艺分为两种,化学蚀刻和物理 研磨,目前化学蚀刻是 TFT-LCD 业界主流工艺方式,即利用氢氟酸与基板材料二氧 化硅发生化学反应并使其溶解的原理,对面板表面进行咬蚀,将面板厚度变薄,达 到工艺要求的玻璃基板的厚度。2.2.2、 2020 年国内平板显示用湿电子化学品需求量 69 万吨 面板行业两大趋势:全球产能向中国大陆转移,小尺寸OLED渗透率快速提升。 根据 Wind 数据,2015-2019 年全球 LCD 面板出货量整体保持平稳,2019 年出货量 为 1.44 亿片,同比略微下降 0.43%;但大尺寸 LCD 面板出货面积仍稳步增长,2019 年同比增长 5.21%。全球面板产业呈现向中国大陆转移的趋势,2016 年中国大陆面 板厂商出货量首次超越中国台湾地区的出货量,位居全球第二,2017 年底国内面板 产能首次超过韩国位居全球第一, 2019年国内面板在全球市场的占有率超40%。 IHS Markit 预计,到 2023 年中国大陆的面板出货量占全球的出货量比例将进一步提升, 将占全球总产能的 55%。相较于 LCD 面板,OLED 作为一种新型显示面板,具备厚 度小、可弯曲、色彩对比度高等优点,在智能手机等小尺寸应用领域实现渗透率的 快速提升。根据 CINNO Research 数据,2018 年全球 OLED 智能手机销量 3.70 亿部, 渗透率达到 26.3%。由于柔性 AMOLED 工艺的成熟、成本将接近 LCD,OLED 在智 能手机市场将逐渐取代 LCD 成为共识,CINNO Research 预计 OLED 手机渗透率在 2024 年将达到 69.1%。中国大陆面板产业崛起,推动国内湿电子化学品需求增长提速。截至 2018 年底, 中国大陆已经建成投产的 LCD、OLED 面板生产线产能分别为 1.13 亿平米、201.80 万平米。由于 OLED 面板对洁净度的更高要求以及蚀刻工艺的差别,同等面积 OLED 面板制造所需要的湿电子化学品用量比 LCD 更多。根据湿电子化学行业协会数据, 单位面积 OLED 消耗的湿电子化学品量约是 LCD 面板的 7 倍。随着多个高世代及 OLED 面板陆续产线,国内平板显示用湿电子化学品的需求不断增加。2018 年我国 LCD 面板、OLED 面板用湿电子化学品的消耗量分别为 29.68 万吨、4.40 万吨,同 比增长 13.95%、119.61%。从具体产品种类看,剥离液和 Al 蚀刻液是 LCD 面板制 造中用量最大的两个品种,2018 年国内消耗量分别为 9.28 万吨和 4.86 万吨,而 Cu 电极工艺的发展有望带来 Cu 蚀刻液的用量大幅增长;OLED 面板制造中,剥离液和 显影液的用量占比最高,2018 年国内消耗量分别为 1.93 万吨、1.16 万吨。2020 年国内平板显示行业湿电子化学品需求量有望达 69 万吨。京东方、华星 光电、中电熊猫等多条高世代面板产线建成投产,将进一步增加湿电子化学品的配 套需求。根据中国电子材料行业协会的统计数据, 2020 年中国大陆 LCD 面板、 OLED 面板产能分别达 1.69 亿平米、1509 万平米。按照 80%的产能利用率,我们测算 2020 年 LCD、OLED 面板制造对湿电子化学品的需求量分别达 42 万吨、27 万吨,行业 总需求为 69万吨, 2014-2020 年复合增长率为 28.15%,我们预计未来三年将保持 25% 以上的增速。随着平板显示向高世代发展趋势的加快,对产品的良品率、稳定性、 分辨率以及反应时间会有越来越高的要求,相应对高世代线用湿电子化学品提出越 来越高的要求。2.1、 太阳能电池:光伏平价上网打开湿电子化学品长期空间 2.1.1、 湿电子化学品用于太阳能电池片的制绒、清洗、蚀刻工序 湿电子化学品主要应用于太阳能电池片制造的制绒、清洗及蚀刻。太阳能电池工作原理的基础是半导体 P-N 结的光伏效应,晶硅太阳能电池是目前应用最广泛的 电池,其基本结构是在 P 型晶体硅材料上通过扩散等技术形成 N 型半导体层,组成 P-N 结;在 N 型半导体表面制备绒面结构和减反射层,然后是金属电极,而在 P 型 半导体上直接制备背面金属接触。太阳能电池片制造的主要工艺步骤包括:绒面制 备、P-N 结制备、铝背场制备、正面和背面金属接触以及减反射层沉积。晶硅太阳 能电池片制程中所用湿电子化学品,主要应用于太阳能电池片的制绒、清洗及蚀刻, 其中制绒加工部分的湿电子化学品用量占总消耗量的 60%-70%。(1)制绒由于太阳能电池硅片切割过程中的线切作用,硅片表面往往存在 10-20 微米的损 失层,因此制备太阳能电池时需利用化学腐蚀去除这层机械损伤层,并进行硅片表 面织构化,即制绒。通过化学腐蚀在硅片表面形成凹凸不平的结构,延长光在电池 表面的传播路径,减少光反射造成的光损失,从而提高太阳能电池对光的吸收效率。 同时,绒面也能对后续组件封装的光匹配有比较大的帮助,可减少组件封装的损耗。单晶硅采用的碱处理制绒,多晶硅采用的酸处理制绒。目前,晶体硅太阳能电 池的绒面一般是通过化学腐蚀方法制作完成。针对不同硅片类型,有两种不同的化 学液体系的制绒工艺,过程中使用的碱/酸处理剂,以及配合使用的清洗剂,都属于 湿电子化学品范畴。单晶太阳能电池片的制绒加工,是利用单晶片各向异性的腐蚀 特性由强碱对硅片表面进行一系列的腐蚀,形成似金字塔状的绒面,所用处理剂为 氢氧化钠(或氢氧化钾)、异丙醇(或乙醇)、硅酸钠、绒面添加剂等;多晶硅片的 制绒加工,是利用强腐蚀性酸混合液的各向同性的腐蚀特性对硅片表面进行腐蚀, 所用的主要处理剂为硝酸、氢氟酸以及添加剂。多晶硅制绒还有机械刻槽、反应离 子腐蚀(RIE)等其他方法,但机械刻槽要求硅片厚度在 200 微米以上,RIE 设备复 杂且昂贵,相对来说,酸性腐蚀法工艺简单、成本低廉,仍是大多数公司的选择。(2)清洗太阳能电池片清洗加工,一般思路是首先去除硅片表面的有机沾污,因为有机 物会遮盖部分硅片表面,从而使氧化膜和与之相关的沾污难以去除;然后溶解氧化 膜,因为氧化层是“沾污陷阱”,也会引入外延缺陷;最后再去除颗粒、金属等沾污。 因此太阳能电池片的典型清洗的工艺顺序为:去分子(超声清洗)→去离子→去原 子→去离子→水冲洗。根据清洗杂质的类型不同,清洗过程中使用的湿电子化学品 也有所不同。(3)蚀刻经过扩散工序后,硅片表面、背面、周边会形成 N 型层,若不去除边缘的 N 型 层,制成的电池片会因为边缘漏电而无法使用。扩散过程中,硅片表面形成了一层 磷硅玻璃(PSG),磷硅玻璃不导电,为了形成良好的欧姆接触,减少光的反射,在 沉积减反射膜之前,必须把磷硅玻璃腐蚀掉。太阳能电池片的蚀刻工艺也分为干法 和湿法两种,湿法蚀刻应用较多。湿法蚀刻利用 HNO3和 HF 的混合液对硅片表面进 行腐蚀,达到同时去除边缘的 N 型硅和磷硅玻璃的效果。2.1.2、 2020 年国内太阳能电池用湿电子化学品需求量 41 万吨我国太阳能电池片产量持续增长。光伏太阳能作为资源潜力大,环境污染低, 可永续利用,且使用安全的可再生能源,其开发利用受到世界各国高度重视。我国 光伏产业在 2013-2018 年迅速崛起,已经牢牢占据光伏产业链各环节高点龙。2018 年“531 政策”以来,国内光伏产业迎来发展阵痛,新增装机量下滑、产业链价格剧 烈下跌。但受益于海外需求大涨,国内电池片生产端仍在持续增长。据中国光伏行 业协会统计,2019 年国内电池片产量为 108.6 GW,同比上升 24.54%,全球市场占 比达 83%。替代传统能源、光伏产品降本是国内外光伏产业维持增长的驱动力。根 据中国光伏行业协会《2019 年中国光伏产业发展路线图》 ,2025 年国内新增装机量 乐观预期可达 80GW、全球新增装机量乐观预期可达 200GW。从产品类型看,多晶 硅电池片价格快速下滑,企业盈利困难,高效单晶市占率有望呈现不断提升的趋势。氢氟酸、硝酸、氢氧化钾是太阳能电池片制造中用量最多的品种。根据中国电 子材料行业协会的数据,单多晶硅电池片用湿电子化学品的单位消耗量整体接近。 从细分种类看,由于制绒及清洗工艺不同(单晶硅电池片加工为碱制绒、多晶硅电 池片加工为酸制绒),单晶硅电池片对氢氧化钾的用量较大,而多晶硅电池片对氢氟 酸、硝酸的用量较大。2018 年国内太阳能电池用氢氟酸、硝酸、氢氧化钾的消耗量 分别为 10.38 万吨、8.24 万吨、3.71 万吨,我们预计,随着单晶市占率的提升,未来 氢氧化钾的用量及占比将进一步增加。2020 年国内光伏行业湿电子化学品需求量有望达 41 万吨。太阳能电池片生产 对湿电子化学品等级的要求较低,只需达到 G1 等级。随着前几年国内太阳能电池生 产制造业的大规模扩产,湿电子化学品需求量也快速增长,国内众多湿电子化学品 生产企业实现产业链配套,目前该领域的内资企业占有 99%以上的份额。2020 年以 来,通威、隆基等电池片大厂均公布扩产计划,根据 PV Info Link 预测,2020 年新 增电池片产能规划超 40GW。综合考虑新项目投产、落后产能淘汰、多晶产能利用 率走低等因素,我们预计2020年国内太阳能电池片总产量达125 GW,按照3.3吨/MV的单位消耗量,对应湿电子化学品需求量为 41.25 万吨,我们预计未来三年将保持 10%左右的增速。3、 全球湿电子化学品产能重心向亚太转移,政策资金助力国内发展3.1、 以海外为鉴,单点突破是后进者主要成长路径 3.1.1、 全球湿电子化学品的发展与集成电路产业密切相关 湿电子化学品的产生与发展与集成电路产业密切相关。20 世纪 60 年代起,大 规模集成电路及超大规模集成电路相继出现,对集成电路制造用化学试剂要求更高, 湿电子化学品也就是在这一需求市场的变化背景下应运而生,可以说目前国际上在 湿电子化学品技术发展方面的重点还在大规模集成电路的应用领域中。同时湿电子 化学品也成为电子化学品产业中的一个重要门类,其应用市场还渗透到平板显示、 LED、太阳能电池、光磁记录存储体产品等领域中。由于全球湿电子化学品市场的 不断扩大,从事湿电子化学品研究与生产的厂家及机构也在增多,生产规模不断扩 大。全球湿电子化学品的市场格局经历了三个阶段的变化:(1)美欧垄断 20 世纪 80 年代至 90 年代中期,湿电子化学品市场主要由美国、欧洲(主要为 德国、英国等)的几家世界知名的化工企业所垄断,它们约占整个世界湿电子化学 品市场的 65%以上。当时市场占有率较高的主要企业有:德国 Merck(默克)公司、 美国亚仕兰(Ashland)公司、美国奥林(Olin)公司、美国 Mallinckradt Baker 公司、 美国 Arch 公司、英国的 B.D.H 公司等,其中以德国默克为最大,其次是日本的一 些企业,包括关东化学、三菱瓦斯化学、住友化学、和光纯药公司等。(2)日本崛起 自 20 世纪 90 年代后期起,世界湿电子化学品市场格局发生一些转变。主要是 由于日本半导体产业的迅速发展,日本企业的湿电子化学品在生产规模及世界市场 占有率方面都得到了较大的发展。日本湿电子化学品企业还大幅度促进了湿电子化 学品制造技术的提高。(3)亚太主导 21 世纪前十年代的后期起,随着亚洲其它国家、地区(不含日本)在半导体、 平板显示器、太阳能电池等产业快速发展,亚太地区已成为全球湿电子化学品的主 导市场,其中中国台湾地区、韩国等湿电子化学品生产企业市场份额得到明显的扩 大。陶氏、霍尼韦尔、巴斯夫等公司竞相将电子化学品业务重点放在亚太地区,而 部分欧美传统老牌企业在全球市场的份额上出现明显的缩减。全球湿电子化学品市场三分天下,欧美、日本企业份额逐年降低。根据中国电 子材料行业协会数据,2018 年全球半导体、平板显示、太阳能电池三大应用市场使 用湿电子化学品总量达到 307 万吨,全球市场规模 52.65 亿美元。市场格局方面, 2018 年欧美传统老牌企业(包括其亚洲工厂)的市场份额(以销售额计)约为 33%, 较 2010 年减少 4 个百分点;第二块市场份额是由日本的十家左右生产企业所拥有, 总共占 27%左右,较 2010 年减少 7 个百分点;其余市场份额主要是中国台湾、韩国、 中国大陆本土企业生产的湿电子化学品所占领,约占世界市场总量 38%,近年来这 些国家、地区的应用市场大幅扩大,特别是在大尺寸晶圆、高世代液晶面板、OLED 面板等湿电子化学品新市场方面,因此中国台湾、韩国、中国大陆等国家、地区的 湿电子化学品生产能力、技术水平及市场规模都得到快速发展,替代欧美、日本同 类产品的趋势显著。根据中国电子材料行业协会数据,2018 年中国大陆三大应用市 场使用湿电子化学品总量约 92 万吨,对应市场规模约为 110 亿元。3.1.2、 老牌厂商以多元化集团为主,新进者多为专业生产商 全球湿电子化学品行业参与者分为两类:多元化集团与专业型生产商。我们对 境外及中国台湾地区的湿电子化学品生厂商进行了全面梳理,其中欧美企业多为传 统大型化工企业,具有生产历史悠久、品种齐全、生产基地遍及世界各地的特点, 代表性企业如巴斯夫、霍尼韦尔、美国亚什兰、德国汉高,其中巴斯夫 2005 年收购 默克的电子化学业务成为业内领先供应商。日本湿电子化学品生企业中既有住友化 学、三菱化学这样的综合性化学集团,也有 Stella Chemifa、关东化学这样技术领先 的专业型生产商,目前 Stella Chemifa 是世界最大的高纯氢氟酸企业。韩国主要湿电 子化学品企业是东友和东进,它们最早的技术来源于日本,这两家企业都没有韩国 电子产业的大集团背景;由于平板显示在韩国发展迅速,此领域两家韩国公司的产 品市占率较高,但半导体高端晶圆加工用湿电子化学品仍未实现全面国产化。中国 台湾本岛的湿电子化学品生产企业普遍成立于 20 世纪 90 年后,其特点是合资公司 较多,如台湾东应化是东京应化与台湾长春石化的合资公司,伊默克化学由巴斯夫 及关东化学合资,理盛精密是由日本 Rasa 控股。由此可见,湿电子化学品发展初期 需要依赖成熟的化工产业经验、充分的技术积累,大型综合集团的资金优势也使其 在产业整合、生产规模、产品种类等方面具备优势;行业后进者多通过技术引进、 打造专业型湿电子化学品生产商。湿电子化学品品种规格繁多,单点突破是新进者较为可行的成长路径。由于湿 电子化学品的品种多,每种产品的制备工艺路线、设备及对设备材质的要求各不相 同,而且为了保证产品的纯度和洁净度,相关的设备通常不是通用设备。厂商必须 根据不同品种的特性来确定各自的工艺路线,独立设计安装主要产品的生产线。在 湿电子化学品应用领域逐渐细化的背景下,行业后进者往往选择有限的产品进行生 产。我们认为,尽管在发展初期会面临产品结构单一、难以配套供货的劣势,但结 合湿电子化学品行业客户验证壁垒高、技术门槛高的特点,通过持续的研发投入实 现单点突破、打造细分产品的专业化生产商是新进者较为可行的成长路径。 3.2、 国产替代空间广阔,政策资金助力行业发展 3.2.1、 我国湿电子化学品行业起步较晚,高等级产品国产化率较低 我国湿电子化学品产业起步较晚,2006 年进入规模化发展阶段。自 20 世纪七 八时年代中期起至 21 世纪前十年代中期,中国大陆湿电子化学品企业在规模上、技 术水平上都比较低,与国际上的湿电子化学品大型企业相差甚远。21 世纪初期我国 湿电子化学品的产量不足 5,000 吨,2004 年达到了 1.1 万吨左右。自 2005 年以来, 国内光伏产业进入规模发展阶段,对湿电子化学品的性能要求门槛相对较低,国内 不少湿电子化学品企业进入太阳能电池片行业,生产规模得到快速发展。2010 年年 后,平板显示、IC 制造产业相继向中国大陆转移,新市场带来需求量的增加,驱动 我国湿电子化学品行业进入大规模快速发展阶段。同时下游光伏行业的调整使得该 领域湿电子化学品销售价格大幅下滑,一些有一定生产规模和技术水平较高的企业 为追求更高效益而调整产业结构,将更多的湿电子化学品生产量转向半导体、平板 显示市场。国内湿电子化学品产能集中于华东地区,区域发展不平衡。目前国内湿电子化 学品生产企业约有 40 多家,产品达到国际标准,且具备一定生产规模的企业有 30 多家。这些企业中,外资企业占比很少,多为内资企业和合资企业。在我国湿电子 化学品的区域产量分部上,目前华东地区占有绝对的优势,特别是江阴、苏州地区, 包括江阴江化微、苏州晶瑞化学、江阴润玛、江阴化学试剂厂等知名内资企业均位 于该区域。根据中国电子材料行业协会统计,2018 年华东地区的湿电子化学品产量 约占国内总产量的 74%左右,江阴、苏州的产量占比分别约为 41%、20%。近年来, 多个集成电路、面板、太阳能电池项目在中西部落地,如位于湖北的长江存储、武 汉新芯、武汉天马 G6,位于成都、绵阳的京东柔性 AMOLED 线,以及通威在成都、 眉山的电池片项目等。随着下游产业在中西部地区深入布局,湿电子化学品区域发 展不平衡的现象凸显,华东及沿海地区生产商对于内陆的供应需要经过长途运输, 高昂的运输成本下,内陆地区亟须更多就近配套的湿电子化学品供应商。三大应用领域国产化率不一,高等级产品仍待突破。中国大陆湿电子化学品整体技 术水平与海外存在较大差距的原因,一方面大陆相关企业起步较晚,另一方面相比于欧 美日湿电子化学品产生于大规模集成电路时代、韩国湿电子化学品产生于液晶面板的爆 发,中国大陆湿电子化学品是跟随光伏产业发展起来的,因此 2010 年以前内资厂商的技 术水平整体停留在 G1、G2 等级。自 2011 年起我国多家湿电子化学品企业在设备装备上 开始进行大规模投资,工艺技术档次也有迅速的提升,能够逐步满足下游显示面板、集 成电路日益增长的需求。根据中国电子材料行业协会的统计数据,2018 年太阳能电池、 平板显示、半导体领域的湿电子化学品国产化率分别约为 99%、35%、23%(按销售供 应量计) ,太阳能电池市场基本满足生产需求,而平板显示、半导体领域的国产化率反而 较前两年小幅下降,主要原因是高世代面板线和大尺寸晶圆加工对高等级湿电子化学品 的需求增加。具体来看,2018 年我国晶圆加工所用的湿电子化学品,在 6 英寸及 6 英寸 (一般为 0.8-1.2μm、0.5-0.6μm)以下的国产化率为 83%左右,在 8 英寸及 8 英寸以上(含 0.25-0.35μm、28nm-0.18μm)的国产化率不足 20%,大部分产品来自进口;2018 年我国 平板显示所用的湿电子化学品,在 G4.5 至 G5.5 代线的国产化率超过 80%,而在 G6 至 G8.5 代线的国产化率仅为 29%,OLED 面板所需的湿电子化学品目前仍有品种被韩国、 日本和我国台湾地区的少数电子化学品厂商垄断。由此可见,如果未来能够在高端领域 实现进口替代的突破与进展,我国内资湿电子化学品企业发展空间广阔。3.2.2、 政策加码,资金助力,湿电子化学品迎发展契机 由于湿电子化学品在行业发展中的重要性突出,我国在政策上鼓励该产业的发 展。近十年来,湿电子化学品也已成为我国化学工业中一个重要的独立分支和新增 长点,我国把新兴产业配套用电子化学品作为化学工业发展的战略重点之一和新材 料行业发展的重要组成部分,在政策上予以重点支持。“十五”、“十一五”期间我国 把湿电子化学品的研发列入“863”计划;在 2008 年国家科技部下发《高新技术企 业认定管理办法》中,明确列出超净高纯试剂属于国家重点支持的高新技术领域。 在 2014 年工信部和发改委联合制定的《2014-2016 年新型显示产业创新发展行动计 划》中提出,“引导面板企业加强横向合作,对上游产品实现互信互认,鼓励面板企 业加大本地材料和设备的采购力度”。在国家政策的引导下,下游本土领军企业积极 开展对国产材料的合作研发、验证及配套采购,根据《集成电路产业全书》的数据, 中芯国际国产材料累计验证成功项目从 2010 年的 6 个增至 2015 年的 51 个。大基金二期即将开始实质投资,湿电子化学品行业迎来新一轮资金支持。国家 集成电路产业投资基金(大基金)是为促进集成电路产业发展而设立,2014 年 9 月 大基金一期成立,募资规模合计 1,387 亿元。大基金一期(含子基金)投资的 9 家半 导体材料企业中,从事湿电子化学品业务的公司有 3 家,包括晶瑞股份、中巨芯科 技、安集科技。但从大基金一期在上下游各领域的投资额占比来看,材料环节的投 资力度稍显不足,占比不到 2%,低于全球半导体产业链中半导体材料产值 11.08% 的占比。大基金二期于 2019 年 10 月 22 日注册成立,注册资本 2,041.5 亿元,较一 期的 987.2 亿元有显著提升,投资方向上也将加重上游材料行业。近期大基金管理机 构华芯投资表示,大基金二期将在稳固一期投资企业基础上弥补一期空白,加强半 导体设备、材料和 IC 设计等附加值较高环节的投资。随着大基金二期实质投资的正 式启动,湿电子化学品行业有望迎来新一轮资金支持。4、 受益标的(略,详见报告原文)4.1、 江化微(603078.SH):三大领域全系列湿电子化学品供应商4.2、 晶瑞股份(300655.SZ):拳头产品达 G5 等级,打入高端市场4.3、 巨化股份(600160.SH):旗下凯圣氟化学是国内领先的电子级氢氟 酸生产商……(报告观点属于原作者,仅供参考。报告来源:开源证券)如需报告原文档请登录【未来智库】。

呱呱呱

化工产业链梳理专题报告:化繁为简,看懂化工产业链

如需报告请登录【未来智库】。关键结论与投资建议化工行业发展至今,下游产品已经涉及到各个领域当中,相应的化工行业上市 公司的数量也越来越多,我们已经不能把二级市场的化工板块单纯的看做一个 行业去进行研究。化工行业的研究有其共性,本质上都是制造业,将原材料经 过加工后制造成可以供终端企业使用的制品或者制剂。但正因为涉及产品过多, 各个子产业链的景气周期并不完全同步,甚至有些子产业链并不依赖于宏观经 济的周期波动,而是与高端科技产业链的国产化发展息息相关。因此我们在深 入研究化工行业时,需要从细分产业链的角度去分别进行景气度的判断,从而 指导在二级市场上的企业价值投资研究。本报告对化工行业进行简化梳理和分析,将产业链简化成上中下游三个环节, 同时从多角度划分当前化工研究中的重要细分产业链,最后简述了未来化工产 业链围绕“去瓶颈”的长期发展趋势。建议重点关注:万华化学、华鲁恒升、 龙蟒佰利、宝丰能源、浙江龙盛等化工核心产业链中的龙头公司,以及金发科 技、道恩股份、回天新材、蓝晓科技、飞凯材料、恩捷股份、新宙邦等在高端 科技产业链中能够供应关键化工新材料的代表性公司。国内化工行业的整体概况化工行业上市公司总市值占全市场 7% 截至截至 2020.1.1,全 A 股上市公司总市值为 64.75 万亿元,按照中信一级行 业分级,石油化工和基础化工板块总市值分别为 2.34、2.23 万亿元,占比则分 别为 3.6%和 3.4%。如果合并计算的话,整个石化和基化板块的总市值占比为 7.0%,在所有一级行业中仅次于银行和非银行金融板块。上市公司数量合计也 达到了 366 家(统计截至截至 2020.1.1,按照中信行业分级),在所有一级行 业中数量最多。由此可见,化工行业在整个国民经济以及资本市场中具有非常 重要的地位。考虑到化工板块上市公司里面中国石油和中国石化的市值规模比较大,本年初 市值分别为 1.07 和 0.62 万亿元,剔除两桶油之后,其余化工公司的市值规模 合计约为 2.88 万亿元,总市值占比则为 4.5%,也仅次于医药、食品饮料和电 子等非金融行业。分开来看,石油化工板块虽然总市值比较大,截至 2020.1.1 达到 2.34 万亿元。 但是主要是因为将中国石油归在石油开采板块,中国石化归在在炼油板块,如 果剔除两桶油,其余公司的市值合计仅 0.66 万亿元。而且石油化工上市公司仅 45 家,数量较少,平均市值在 152 亿元。这主要是因为石化企业一般营业规模 和资产规模都比较大,特别是一些石油炼化企业。基础化工板块总市值在截至 2020.1.1 达到 2.23 万亿元,有 321 家上市公司, 平均市值规模在 69 亿元,与轻工、机械、纺服等行业接近。这反映了国内化工 产业的两个现状:一、基础化工产品种类较多,且国内市场规模较大,各细分 领域都容易出现经营优秀的龙头公司;二、国内化工产业大而不强,现阶段没 有出现类似于陶氏杜邦、巴斯夫等产业链齐全的超级化工集团。将基础化工各子版块按照市值排序,农药、聚氨酯、电子化学品、氮肥、氯碱 行业的总市值较大,主要有几点原因:1)行业较为传统,上市时间较早,如氯 碱、氮肥、聚氨酯行业;2)产品种类较多,且国内企业具有全球优势,如农药 行业;3)与新兴产业相关,市场规模增长较快,如电子化学品行业。民企逐渐成为行业主力 截至 2019 年底,化工板块中国资背景的上市公司数量达到 269 家,总市值为 1.13 万亿(剔除两桶油),民营化工上市公司数量达到 257 家,总市值为 1.85 万亿,无论是数量还是总规模,民营企业都占据了主流。对比平均市值,国资背景化工上市公司的平均市值为 101 亿元,而民营化工上市公司的平均市值为 72 亿元。总体上看,民营化工上市公司的数量较多,但是规模偏小,这也正是 体现了民营企业的发展活力。从化工企业历年上市数量情况来看,2008 年之前上市公司大多以国资背景化工 企业为主,民营化工上市公司数量累计占比都不到 30%。而在 2010-2012 年以 及 2015-2017 年的两拨 IPO 集中期,都是以民营化工企业为主,其累计占比也 迅速提升到 70%。未来随着化工行业发展仍以大型化、经济化、绿色化、科技 化等为方向,我们预计民营化工企业上市数量及比例仍将继续增加。当前处于新一轮产能周期开启阶段 化工行业的产能周期与整个工业企业的产能周期较为同步,从上个世纪 80 年开 开始,已经经历了 4 轮产能周期,分别对应 1981-1989 年、1990-1999 年, 2000-2009 年,2010-2018 年。在上一轮产能周期当中,在政策刺激之下大量 化工产能在 2010 年前后集中投放,导致行业产能长期处于过剩状态。从 2011 年之后,国内化工行业开始漫长的去产能阶段,持续 7 年投资增速连续下降。在此期间政府推动各行业出台的供给侧改革措施,以及环保政策的持续加严, 化工行业大量的过剩、落后、低效产能逐步出清。行业产能阶段性出清的一个明显标志就是在 2016Q1-2018Q3 期间,化工行业 明显进入景气上行期,化工品 PPI 同比持续上行,化工企业的盈利状况大幅改 善。在此背景之下,大多数装置先进、工艺领先、管理优秀的行业龙头企业选 择继续扩大产能,巩固自身的行业领先优势。2018 年开始,化工行业固定资产 投资完成额同比呈现上升趋势,行业整体正在进入新一轮产能扩张周期。本轮产能扩张,中上游环节的产能投放进度快于下游制品环节。从国家统计局 的化工子行业的固定资产投资数据来看,中游和上游环节扩产最为明显,石油 加工、炼焦及核燃料加工业和化学原料及化学制品制造业的固定资产投资从 2018 年下半年开始同比增速明显加快。化纤制造业由于本轮扩产的主力是涤纶 丝龙头企业向上游拓展炼化环节,因此实际上增加的主要产能也是偏中游和上 游环节。相对处于下游位置的橡胶和塑料制品业则由于过去几年景气度较差, 因此本轮扩张迹象并不明显,我们推测主要是行业结构发生调整。需求增速较 快的新兴科技产业链相关的制品生产企业扩张较快,而需求增速较慢的传统产 业相关的制品生产企业由于产能相对过剩而基本没有增加产能。因此从产能周期的角度看,如果本轮扩产周期继续按照当前趋势发展,那么上 游和中游环节的产能将再一次达到充分饱和的状态,因为这些环节的相关化工 品基本都是大宗品且非常标准化,规模优势可以得到非常明显的发挥。从产业 链上下游的角度,未来上游和中游环节的相关产品如果能够保持充分供应,那 么对于下游制品而言无疑可以降低原材料成本,从而技术优势可以在产品定价 方面得到充分发挥。 化工产业链简化成三环节化工产业链涉及到的产品众多,具有一定销售规模的化工品至少上千种,对于 大多数二级市场的普通研究者而言,掌握各种产品的名称以及具体用途就已经 是一件非常困难的事情。如果要具体到细致跟踪各种产品的价格以及掌握市场 供需情况,这无疑是需要非常专业的数据支撑以及对化工行业的长时间持续研 究。这也是为什么化工行业的研究门槛相对大多数行业比较高的原因之一了。对比整理的比较全面和细致的化工产业链示意图,可以看到化工品上下游关系 极为复杂,同一种化工品往往有多种合成方式,而下游化工品的制备往往需要 多种上游化工品,甚至还会有不同化工品的应用场景具有相互替代的关系。要 明白各个化工品的定位以及相互之间的关系,无疑是需要付出较大的研究精力, 对于初学者来说非常不友好。因此我们尝试将化工产业链简化为上游原材料、中间化工品、下游制品等三个 环节,可以帮助对化工背景不多的投资研究者迅速了解整个产业链的情况。另 外我们将产业链三大环节的主要涉及产品做一个简单的归类,即便化工研究初 学者记不住大量的化工品名称,也能大致明白化工行业二级市场中接触较多的 化工品在产业链中的定位。上游原材料环节 绝大部分的化工品主要是来源于石油、天然气(包括石油气、页岩气等)、煤炭 以及各种无机矿物(包括原盐)。其中石油、天然气和煤炭因为主要含碳原子和 氢原子,因此通常可以通过蒸馏、裂解、气化等方式得到大量有机化工品(通 常含有有机碳的化合物被称为有机化工品),随着化学工艺的发展,很多化工品 都可以通过油、气、煤三种不同的路径得到。无机矿物则主要有石英砂、磷矿 石、硫铁矿、钛铁矿、钾矿、萤石矿、原盐等,通常用来得到各种无机化工品 (部分有机化工品同样需要无机矿物作为原材料)。上游环节决定了化工品最基础的原材料来源,具备非常强的资源属性,对中下 游的化工品价格常常起到推动性的作用。因此一些大宗化工原材料的价格波动 通常不仅仅由供需结构决定,同时还与金融属性有一定的关联,比如原油和天 然气价格属于全球定价,影响因素也比较复杂。同时,如果中游和下游环节的 生产企业掌握了上游原材料环节的资源,无疑是极大加强了其生产成本的竞争 优势。 中间产物环节 主要是介于上游原材料与下游最终制品中间的化工品(通常也可以被认为是基 础化工品),都可以划分到中间产物环节。但是需要注意的是,中间环节与下游 环节之间并没有明确的划分,不少处于中间环节的化工品同样被当做最终制品 对外销售(主要取决于最终应用场景)。为了方便理解,我们将中间产物分为有 机化工品和无机化工品。有机化工品是指分子结构中含有有机碳的化学品,并且按照分子含有的碳原子 数量,可以分为 C1、C2、C3……等。有机化工品通常是原油炼化后的产物, 其中较为常见的有机化工品主要有甲醇、烯烃(乙烯、丙烯、丁烯等)、芳烃(苯、 甲苯、对二甲苯等)以及各种酸醇酯(比如醋酸、乙二醇、醋酸乙酯等)。无机化工品则指分子结构中主要含有的是无机碳或者不含碳的化学品,常见的 主要是三酸两碱(硫酸、盐酸、硝酸、纯碱、烧碱)、氮磷钾(含氮、磷、钾元 素的产品)以及氟硅钛(比如氢氟酸、有机硅、钛白粉等产品)。(需要说明的是,如果严格的从化学意义上的分类而言,我们对有机化工品以 及无机化工品的分类并不严谨,如果仅仅从方便理解的角度出发,这种分类并 无太大偏差。)中游环节的相关化工品是整个产业链的重要组成部分,因为产品最多,相互之 间关系最复杂,因此最难研究。通常需要对中间化工品里面选取市场规模较大 核心产品进行细分产业链划分,在细分产业链内部再根据上下游的供需情况去 研究行业景气程度。中游环节相关化工品的标准化程度相对较高,因此具有明显规模效应和一体化 平台化效应,行业龙头公司近年来也纷纷扩大生产规模,积极打造综合性的化 工项目。通过综合化运营,企业可以通过中间产物在多个产业链之间的循环利 用,从而提高原材料的利用率,降低整体生产成本。因此在研究中游环节的相 关企业价值时,拆分其运营成本是非常重要的研究工作。 下游制品环节 我们一般把直接与终端应用相关联的产品划分到下游制品环节,比如常见的塑 料、橡胶、化纤、农药、化肥等产品。因为化工品应用领域广泛,基本上已经 渗透到工业生产和日常生活的各个方面,涉及到的产品也林林总总。为了便于 理解,我们通常将下游制品环节按照应用领域进行划分,如衣(纺织服装)、食 (农业、食物)、住(建筑装饰)、行(交通运输)以及科技(TMT、新能源、 航空航天)等领域相关的化工材料。下游环节的行业景气度主要取决于需求端的增速,同时也要关注原材料端的价 格走势。一般而言,下游制品环节的相关产品的毛利率越高,则意味着产品的 标准化程度相对较低,相关企业的核心竞争优势在于技术研发,行业的景气度 主要由下游的需求增速所决定。产品毛利率越低,则意味着产品的标准化程度 较高,企业之间主要比拼的就是成本优势,其原材料价格的波动通常会对企业 盈利状况产生较大影响。随着化工行业新一轮产能的扩张,上游的核心原材料及中间制品的供应日益充 分,我们认为这一轮产能周期中最为受益的就是下游制品环节的相关企业。特 别是科技产业链的相关材料,原材料端压力逐步减小,需求端在国内科技产业 的快速发展之下有望迎来一波国产化替代的高景气时期。 多角度看化工细分产业链为了便于研究,我们通常将整个化工产业链再细分成若干个重要的细分产业链。 基于我们的研究经验,总结了 4 个不同角度对化工子产业链进行划分。从原材 料的角度,可以划分为石油产业链、天然气(或者轻烃)产业链、煤化工产业 链;从核心产品的角度出发,可以分出比较重要的聚烯烃、有机硅、钛白粉、 氟化工、氯碱、聚氨酯产业链;以终端应用场景出发,基建地产、车用材料、 纺服、农化、新能源、电子化学品等产业链则相对较为重要,且相关研究对象 上市公司较多;从整个产业链纵向角度出发,我们认为石油-炼化-化纤这条产业链是目前化工产业链中最为重要的投资主线之一。下文中我们再从这 4 个角度出发,将我们认为比较重要的产业链进行简单的梳 理,方便行业初级研究者迅速了解当前国内化工行业的重点研究方向。需要说 明的是,本文中的梳理以产业链解析为主,对于产业链中详细的数据分析则涉 及较少,后续我们会再发布细分产业链深度梳理报告一一详解。以原材料来源划分 从原材料来源的角度出发,我们认为石油、天然气(或轻烃)、煤化工这三条产 业链相对更为重要,而且三条产业链中有较多的重合之处,相互之间有较强的 原材料替代作用。无机矿物虽然也是化工品的主要原材料之一,但是因为涉及 矿物的种类较多,且产业链发展重心在于中游环节的基础化工品或者下游的衍 生化工制品。石油化工产业链 石油产业链的上游是勘探、采掘、油服等环节,得到石油后进行炼制主要分离 出三类产品,分别是成品油(进一步提炼后得到汽油、柴油和煤油)、石脑油(作 为烯烃、芳烃以及其他含碳有机化工品)、重组分物质(主要是石蜡、沥青、润 滑油等副产物)。其中石脑油经过裂解得到烯烃和芳烃,再向下游发展就得到各 类有机化工品。因此石油化工仍然是目前最成熟、产品范围最广的产业链。产业链研究重点: 我们认为如果从原材料的角度研究石油化工产业链,重点必然在于判断原油价 格当前所处的水平,特别是与其他可替代的化工原材料(天然气/轻烃、煤炭) 的价格相比较。由于石油路线的化工品占比仍占据主流,因此原油价格短期的 波动会直接到产业链下游各产品的价格,从而影响到三条工艺路线之间的盈利 能力的相对变化。另外由于国内大型炼化项目的逐步落地,我们也将从过去的研究单一产品盈利 能力的变化,转变成研究整个炼化项目的运行状况及盈利能力的跟踪与分析, 对于研究者而言需要对整个炼化项目的核心产品及优势有全面的了解。 产业链发展趋势: 成品油过剩将成为长期趋势。成品油过去主要是国营炼厂(中石化、中石油、 中海油等)凭借原材料优势占据绝对主导地位,民营地方炼厂则因为难以获得 石油的进口权和使用权的审批而发展受到一定程度的限制。但是自从国家 2016 年逐步开放“两权”之后,民营地方炼厂获得大量的石油进口配额以及使用权, 推动了民营炼化企业的迅速发展。而且随着国内石油进口额度的持续增长, 2019 年国内石油进口量已经达到 5.06 亿吨,国内炼油产能已经接近 9 亿吨, 因此国内成品油基本处于供给宽松的转台。特别是柴油,由于工业需求增速放 缓,炼厂大多数将成品油的结构向汽油和航空煤油转变。另外因为新能源汽车 的渗透率有望在 5-10 年后便可达到不可忽略的水平,对汽油的消费需求会有明 显的替代效应,因此成品油在未来可能会长期处于供给过剩的状态。大多数炼厂都主动向炼制化工品方向调整。由于化工品的价格波动幅度较大, 产品的盈利能力与下游的需求变化密切相关,且受到原材料限制,因此一般炼 厂过去较少的选择向化工品方向发展。但是随着石油进口权和使用权向民营炼 厂放开,一些处于下游和中游的民营化工企业开始向上游石油炼化环节拓展业 务,向上打通产业链,发挥产业链一体化的优势,比如浙江和江苏的几大民营 涤纶丝巨头都纷纷布局上游炼化项目。未来石油产业链将越来越侧重于化工品 的生产运营。石油产业链向上下游一体化发展。除了炼制成品油和化工品的一体化运营之外, 石油产业链的另一个趋势就是化工品的上下游一体化发展。过去炼厂炼制的化 工品大多是对外出售一些较为基础的化工原材料,例如烯烃或者芳烃,以及一 些 C4、C5、C9 等副产物。但是随着民营炼化项目的相继落地运营,以及原有 炼厂项目的升级改造,石油产业链向下游环节一体化运营的趋势越来越明显。 产业链延伸的好处就是可以充分消化上游基础产品的产能,以及提高最终产品 的附加值,加强项目整体的盈利能力,降低价格波动带来的运营风险。我们推荐关注:中国石油、中国石化、恒力石化 天然气/轻烃化工产业链 一般可以用来生产下游化工品的气体主要是甲烷、乙烷、丙烷等含碳分子量较 小的气体,主要以天然气、液化石油气、天然气凝析液等形式出现,而甲烷、 乙烷、丙烷等气体我们也经常统称为轻烃。天然气的主要成分是甲烷,在国内 的主要用途还是作为燃料使用,用于化工品的比例较小,其主要用来生产尿素、 甲醇、PVC 等化工品。近年丙烷脱氢和乙烷脱氢项目的大量建设,从中东和北 美等地区的乙烷、丙烷等气体的进口量也大幅增长,因为具备明显的原材料价格优势,未来有望成为重要的产业链之一。产业链研究重点:轻烃裂解制备烯烃极具成本优势,未来有可能对石油路线的产品价格产生冲击。国内天然气在化工领域的用途主要是生产尿素,其次是生产甲醇、甲醛、乙炔、 二氯甲烷、四氯化碳、二硫化碳、硝基甲烷、氢氰酸和炭黑以及提取氦气。但 是这些产品中,天然气路线的占比都相对较小,没有产品定价能力,而且由于 天然气和石油同样具备能源属性,二者之间价格波动关联较为密切。因此在生 产以上的这些化工品时,天然气路线通常不具备原材料成本优势。相比之下, 近年来发展较为迅速的轻烃裂解项目(乙烷裂解和丙烷脱氢)由于原材料乙烷 和丙烷具备较强的成本优势,因为未来很有可能会对石油路线的烯烃相关产品 的价格体系产生冲击。产业链发展方向:随着国内环保要求的提升,对清洁能源的需求量逐年提高,天然气在传统能源 中最为清洁(燃烧最为充分,几乎不排放除 CO2 以外的污染气体)。我们认为 天然气的能源需求仍是主流,化工品路线并不具备明显的成本优势,只能是在 一些区域作为化工产业的补充路线。我们比较看好轻烃裂解路线的长期发展,乙烷、丙烷等原材料具有明显的成本 优势,且生产的烯烃目前国内进口依赖度仍然相对较高,且具有较多的下游相 关产业,可以建设一体化项目,提升项目的整体盈利能力。我们推荐关注:东华能源煤化工产业链煤化工可以分为传统煤化工和新型煤化工,其中传统煤化工在我国发展较早, 主要是生产 PVC、炭黑、合成氨等传统化工产品,国内产能较为过剩,相关产 品的盈利能力也较为一般。新型煤化工则主要是以替代石油路线为目的,几乎 可以生产大多数石油产业链的化工品,例如烯烃、芳烃、乙二醇、醋酸、成品 油等常见的石油化工品。产业链研究重点:我们认为新型煤化工是当前产业发展的重点,其中煤制甲醇、煤制烯烃、煤制 醋酸、煤制乙二醇等产品与石油路线以及天然气路线相比,具有较为明显的成 本优势。但是煤化工项目对资源要求较高,通常需要建设在煤炭和水资源丰富、 且对外交通运输较为便利的地区。煤化工产业链研究的重点在于拆分产品的成 本结构,由于煤化工项目的投资成本较大、煤炭等原材料的成本占比较低,因 此煤化工产品的成本相对波动较小,过去根据行业经验,通常在石油价格高于 50 美金/桶以上时(当前山西地区原料煤价格在 500 元/吨),煤化工路线具有明 显的成本优势。我们则认为,近年来随着煤化工老项目的折旧费用逐年减少, 以及新项目的技术升级较快,固定资产折旧在产品的成本占比有下降的趋势, 因此在石油价格高于 45 美金/桶以上时(当前山西地区原料煤价格在 500 元/吨), 煤化工路线就已经具备成本优势。 产业链发展方向: 单吨产品的投资成本有下降趋势。近几年随着煤气化以及其他关键技术的进一 步发展,以及民营资本开始加大煤化工项目的投资,单吨产品的投资成本已经 开始有下降的趋势。以煤制烯烃为例,过去单吨烯烃的投资成本超过 3 亿元, 在民营企业宝丰能源新建的煤制烯烃二期项目的单吨投资成本已经降到 2 亿元 以内。项目建设成本的降低,使得煤化工路线的成本竞争力进一步加强。工艺进步和产品转化率提升,使得产品成本仍有下降空间。煤化工路线中通过 煤炭汽化制备合成气以及甲醇制备烯烃等工艺环节中,仍存在原材料损耗的问 题。但是随着煤炭气化炉的逐步改进,以及甲醇单耗的下降,原材料转化率提 升使得产品的成本仍有下降的空间。我们推荐关注:宝丰能源、华鲁恒升 以核心产品划分 从产业链核心产品的角度来划分,好处就是能够迅速明白产业链的核心材料, 以及快速梳理关系最为密切的相关产品之间的产业链关系。通常我们二级行业 研究当中,对聚烯烃、有机硅、钛白粉、氟化工、聚氨酯、氯碱等产业链研究 较多,相关上市公司也较为容易归类梳理。 聚烯烃产业链 聚烯烃是最常见也是应用范围最广的高分子材料,是由乙烯、丙烯、1-丁烯、 1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃单独聚合或 共聚合而得到的一类热塑性树脂的总称。正如上文分析,其原材料可以来源于 石油、轻烃、煤炭,但是产品价格往往与石油价格的波动最为密切相关。消费 量最大的聚烯烃主要是聚乙烯 PE 和聚丙烯 PP,其他的聚烯烃(如聚丁烯等) 则通常被用来生产合成橡胶或高端新材料。聚乙烯和聚丙烯往往会直接使用或 者经过加工成为改性塑料,进一步提高性能应用在更多领域。产业链研究重点:上游通用聚烯烃重点在于成本,下游改性塑料重点在于技术和需求。通用型聚 烯烃一般都在炼化项目或者煤化工项目之中,标准化程度较高,因此对比各个 工艺路线以及项目之间的成本优势最为重要。经过加工成为改性塑料之后,性 能被明显提升,可以应用在更为高端的一些领域,产品具有明显的技术附加值, 因此研发技术和下游需求就更为重要。因此我们可以将改性塑料作为产业链研 究的一个节点,其上游的通用聚烯烃研究过程中我们更加关注于成本研究,下 游的改性塑料则更加关注于应用领域的需求增长情况。特别是一些新型领域对 高性能材料的需求有可能在短时间迅速爆发,使得具备技术优势的企业快速占 领市场份额。 产业链发展方向:随着下游改性塑料企业向上游拓展,产业链有上下游一体化的趋势。亚太地区 最大的改性塑料生产企业金发科技在 2019 年收购了宁波金发(原名宁波海越) 的 PDH 项目,正式涉足产业链上游环节,这也意味着聚烯烃产业链开始有上下游整合的迹象。过去产业链整合的困难在于下游改性塑料对技术服务的要求较 高,产品标准化程度低,上游聚烯烃生产企业(过去通常是大型石化企业)难 以在短时间内渗透到终端客户。而下游改性塑料环节则由于产能过于分散,大 部分企业生产规模较低,不具备向上整合的能力。相较于大型炼化项目,轻烃 裂解单个项目的投资成本更低,使得改性塑料的龙头企业开始具备向上游整合 的能力。高端聚烯烃以及改性塑料仍有巨大的需求市场。目前国内塑料制品的产量大约 为 9000 万吨,但是改性塑料的产量不到 2000 吨,改性化率与发达国际的成熟 市场相比仍有提升空间。另外国内高端聚烯烃仍需要从海外大量进口,自给率 不到 40%,每年至少有 400 万吨的需求缺口。上游供应充分,下游改性塑料环节持续受益。近年由于民营炼化、轻烃裂解、 煤制烯烃等项目大量投产,国内聚烯烃的产能迅速增加,随着聚烯烃自给率的 提升,我们认为聚烯烃未来将长期处于供给充分的状态。对于下游改性塑料而 言,原材料供应充分将有利于改性塑料生产企业恢复正常的盈利水平。我们推荐关注:金发科技、道恩股份 有机硅产业链 有机硅产业链就是把硅从石英砂中的无机态转化为胶粘剂、硅树脂、硅橡胶、 硅油、硅烷偶联剂等有机态,另外一部分产业链就是得到高纯度结晶态的硅晶 体(多晶硅和单晶硅)或者石英晶体(光纤预制棒)。有机硅产业链的下游产品 众多,应用领域较为广泛,市场空间长期保持较快增长。产业链研究重点:过去二级市场对有机硅产业链的研究重点在于 DMC(二甲基硅氧烷,重要的有 机硅单体)的供需及价格走势。由于金属硅在有机硅成本中占比较大,而金属 硅的价格又与电价及石英矿的价格联系较为密切,因此金属硅通常会建设在电 力资源丰富的地方。石英矿由于具备矿产资源属性,开采和建设新项目都环保 政策的强力管控,对于下游有机硅企业,如果掌握自有石英矿,无疑在市场竞 争中占据了先机。除了传统的有机硅产品(比如硅树脂、硅油、硅烷偶联剂)以外,高纯度的无 机硅产品在科技产业链的需求带动下,同样需要重视。三氯氢硅除了可以制备 多晶硅和单晶硅(是光伏和芯片行业的重要原材料)以外,其副产的四氯化硅高度提纯后可以制备光纤预制棒(光纤光缆核心材料,在 5G 产业链中有重要 应用),以及高纯电子级二氯二氢硅以及三氯氢硅也是重要的电子特气(在半导 体产业链中有重要应用)。 产业链发展方向:下游有机硅制品是产业链重要发展方向,进一步拓展在科技产业链等高端领域 的应用。目前国内有机硅行业生产经营规模比较大的企业大多是在 DMC 单体 以及下游的一些初级产品上发展,产品也大多是一些通用的密封胶、防水胶等, 国内企业在有机硅高端领域的市场占比较小。随着国内有机硅龙头企业新安股 份开始向下游发力,凭借在有机硅单体环节的规模优势,有望在下游有机硅制 品端取得更多的突破。另外,随着国内科技产业链的崛起,有机硅产业链中一 些产品可以用在电子半导体、5G 通讯用光纤光缆、新能源等高端应用领域,在 国产化替代的历史进程当中,国产企业将取得更多的发展机会。我们推荐关注:新安股份、三友化工 钛白粉产业链 钛白粉产业链的产品较少,且产业链较短,核心产品钛白粉又分为锐钛型和金 红石型,在涂料行业中的应用占到约 60%。我们选取了钛白粉作为重点产业链 之一,主要是看好该产业链出现一个具备全球竞争力的龙头企业,同时对上下 游资源持续整合,带动整个钛白粉产业链甚至钛产业链的发展。产业链研究重点:钛白粉是典型的地产后周期产品,与涂料的消费需求密切相关,因此经常需要 通过观察国内房屋竣工面积的同比增速来判断钛白粉的景气情况。另外由于硫 酸法受到环保政策的限制,钛白粉的生产工艺向氯化法转移逐步成为主流,但 是由于氯化法工艺的技术门槛较高,可以成功量产的企业并不多。由于钛精矿在钛白粉生产成本中占比较大,因此具备稳定的钛精矿供应来源甚至拥有钛矿资源的生产企业,将具备明显的竞争优势。 产业链发展方向:钛白粉生产工艺向氯化法转变是趋势。硫酸法工艺产生的废渣较多,且难以处 理,在当前环保政策持续加严的压力之下,硫酸法产能已经受到限制,短期内 很难新建产能,只能在原有基础上改造扩产。氯化法产生的废渣较少,且中间 产品四氯化钛还可以用来生产海绵钛,因此未来氯化法将逐步成为主流。过去 因为工艺门槛的原因,国内氯化法钛白粉长期无法顺利量产,但随着龙蟒佰利、 云南新立以及四川天原的氯化法新建产能陆续投产,国内氯化法产能占比将逐 步提升。氯化法钛白粉和海绵钛有望同步发展。因为氯化法钛白粉和海绵钛具有相同的 中间产物——四氯化钛,因此随着国内氯化法工艺的逐步突破,四氯化钛的成 本在未来有望大幅降低,这不仅有利于氯化法钛白粉的发展,同样有利于海绵 钛的发展。我们推荐关注:龙蟒佰利 氟化工产业链 氟化工产业链与有机硅产业链有点类似,产业链上的核心元素是氟,以氟化氢 为重要原料,得到的产品分为无机氟产品(主要是无水氢氟酸、六弗磷酸钾、 氟盐等)以及有机氟产品(主要是制冷剂、氟聚合物、含氟精细化工品等),下 游应用领域也较为广泛,特别是氟聚合物通常是作为高性能高分子材料用在一 些高端领域。产业链研究重点:氟产业链的核心产品是氟化氢,其主要原材料是天然萤石矿中的 CaF2 成分, 同样因为萤石矿具备矿产资源的属性,其开采受到国家政策的密切影响。氟化 氢的价格也与萤石矿的价格之间有直接的关系。因此关注萤石矿的供给情况变 化,以及跟踪氢氟酸的价格变化,是过去研究氟化工产业链的重点工作。另外近年来高纯无水氢氟酸、六氟磷酸锂、含氟聚合物在新能源以及科技产业链中有重要应用,因此也得到了越来越多的市场关注。研究此类产品及生产企 业,需要重点关注企业的技术和工艺能力,产品是否能够顺利通过下游重点客 户的认证体系。 产业链发展方向: 氟化工向下游高端应用领域发展。传统氟化工中的产品除了无水氢氟酸以外, 就是含氟制冷剂,但是由于制冷剂逐步向无氟化发展,含氟制冷剂的发展空间 受到一定程度的限制。因此大多数氟化工生产企业开始向其他种类的氟产品转 型,其中氟聚合物、含氟精细化工品以及在高端领域有重要应用的无机氟化物 (特别是六氟磷酸锂和高纯无水氢氟酸)。我们推荐关注:多氟多、巨化股份 聚氨酯产业链 聚氨酯是国内化工行业二级市场研究中较为传统的方向之一,其产业链核心产 品在于异氰酸酯类产品(MDI和TDI),以及由此衍生得到的一系列聚氨酯产品。 聚氨酯产业链由于涉及到的化工原材料很多,且所得到的产品种类众多,下游 应用领域同样非常广泛,因此是国内化工行业中一个非常重要的板块。产业链研究重点:研究重点在于把握龙头公司和下游应用有突破的企业。聚氨酯产业链较为突出 的一个特点就是,核心产品MDI和TDI在国内甚至全球范围内的集中度非常高, 国内以万华化学作为龙头企业的代表,其 MDI 产品已经具备全球定价能力,生 产成本极具竞争优势。而且万华化学已经沿聚氨酯产业链上下游进行了广泛的 布局,正在逐步打造一体化和平台化的核心能力,因此我们认为研究国内聚氨 酯产业链的一个重中之重的要点就是研究龙头企业万华化学。另外值得重点研究的就是在聚氨酯的下游应用领域中有突破的企业,特别是在 一些高端领域(如科技产业链和新能源产业链等)取得突破,将会取得较快的 发展速度,也会从产品定价上摆脱 MDI 等核心原材料价格受制于上游企业的困 境。 产业链发展方向:一体化和平台化发展是主要趋势。聚氨酯产业链较为复杂,涉及到化工品种类 较多,且市场规模较大,适合发展成一体化的项目,可以最大化提升项目的生 产效率以及整体盈利能力。由于聚氨酯下游产品的应用领域较多,对技术研发 的要求较高,因此平台化发展也是必须之路,可以充分 MDI、聚醚等主要原材 料的产能,以及有效利用研发资源。向高端领域进军,是下游企业的突围之路。对于众多的聚氨酯下游企业而言, 因为对上游原材料不具备议价能够力,因此提高自身产品竞争力,进入到高端 领域(特别是新能源和科技产业链)是企业的突围之路。在当前国内新能源产 业链以及科技产业链国产化替代的历史进程之中,真正具备研发实力的企业将 获得更多的机会。我们推荐关注:万华化学、回天新材 氯碱产业链 氯碱产业链是国内化工行业中最为传统的产业链之一,在化工行业二级市场中 被研究的较为充分。在原盐通过电解的方式,得到其核心产品——“氯”(液氯 以及下游的含氯产品)和“碱”(主要是指烧碱),同时副产氢气。因为烧碱是 传统化工中重要的基础化工品之一,在过去国内工业化迅速发展的历史进程中 曾经起到过非常重要的作用,在金属冶炼、纺织、造纸、日化等领域都有广泛 的应用。产业链研究重点:“氯碱平衡”是研究氯碱产业链的重要关注点。过去由于烧碱需求量较大行业 景气度较高,大多数烧碱生产企业单纯重视烧碱的产出效率,对于液氯则较少 重视。因为液氯属于危险化工品,无法长期储存,因此生产企业通常是选择将 液氯以较低的价格对外销售,甚至特殊阶段还会补贴对外处理。但是由于液氯 又通常是用于生产 PVC、环氧丙烷、环氧氯丙烷、甲烷氯化物等产品,当这些 产品处于低景气度时,对液氯的需求量同样会减少,因此即便在烧碱景气度高 时,烧碱生产企业仍然会考虑减少装置负荷率,达到氯产品和碱产品的生产平 衡。这一点在过去的化工行业研究中经常被重视。但是随着国内化工行业向一体化、综合化发展,越来越多的氯碱项目成为综合性项目,其最终产品不再是单一的烧碱或者是液氯,可以根据实际市场需求生 产多种景气度较高的产品。因此未来对氯碱行业的研究重心,可能会转变成为 研究新型氯碱项目的综合盈利能力。 产业链发展方向:拓展“氯”产业,与其他产业链一同综合化运营。氯碱产业大多集中在我国的 华北地区,因此在山东和河北出现区域性的液氯过剩的情况较为普遍。如何有 效消耗液氯,开始得到越来越多的生产企业在规划新项目时的重点考虑。其实 液氯的在有机硅、氟化工产业链中都是重要的原材料之一,因此未来氯碱行业 在发展的过程中,于其他产业链相结合,成为综合一体化运行经营将会成为未 来的主流发展方向。另外,氯碱行业可以副产大量的氢气,在未来氢燃料电池得到迅速发展之后, 其氢气资源将得到更为有效的利用。我们推荐关注:三友化工、中泰化学 总结而言,以核心产品划分产业链在化工行业研究过程中是一个较为常见的划 分角度。其研究方法和重点也较为类似,通常在于找到产业链核心产品,向产 业链上游研究主要原材料的价格波动情况,向产业链下游研究终端制品在应用 领域的需求增速。但是随着国内化工行业发展日益成熟,这些传统方式划分的 细分产业链之间的界限将会变得越来越模糊,未来多个核心产品一体化运营将 成为新的趋势。其中较为典型的企业就是三友化工,其主营产品包括纯碱、烧 碱、粘胶短纤、PVC、有机硅等产品,多条产业链综合运行,提高装置的利用 效率,降低整体生产成本,多年来经营利润随着行业景气度有所波动,但是从 来没有出现亏损情况。 以应用场景划分 从应用场景的角度划分化工细分产业链,通常是这些应用领域对化工品的需求 体量较大,或者是需求增速明显快于其他行业。在我们对化工行业进行需求方 面的研究过程中,从应用场景的角度出发,能够更快的了解到当需求面发生变 化时,有哪些化工产品的景气度有可能会相应发生变化。我们划分了几个相对重要的子产业链,比如化工品应用规模较大的基建地产材 料、车用材料、纺服材料、农化材料(基本对应生活所需的衣、食、住、行), 以及近年来需求增速较快的新能源材料产业链、电子化学品产业链。一般而言, 以应用场景划分的化工子产业链,重点都在于研究应用领域的需求增速。 基建地产产业链 基建地产相关的化工品及材料,在国内化工品下游应用中占比较大。与化工品 较为相关的建材主要包括水泥、玻璃、铝合金、沥青、涂料/装饰纸、外墙保温 材料、管材、玻纤、钢铁等材料,基本上生产这些材料都需要相应的化工品。产业链研究重点:基建地产材料一般可以分为与地产周期同步材料,以及地产后周期材料。地产 周期同步材料则往往是水泥、玻璃、铝合金、钢铁、外墙保温材料等,通常在 地产项目完工之前就需要安装使用。那么这些地产同步周期材料的需求情况一 般可以通过观察国内房屋在建面积的同比增速来进行判断。另外还有一些材料 是在地产项目完工之后,在装修阶段才需要使用的,比如涂料/装饰纸、管材等, 甚至还有一些我们没有画在产业链中的家具材料,都是典型的地产后周期材料。 那么这些地产后周期材料的需求情况一般可以通过观察国内房屋竣工面积的同 比增速来进行判断。 我们推荐关注:万华化学、龙蟒佰利、山东海化、中泰化学 车用材料产业链 车用材料一直是指汽车用材料,在化工品下游需求中也占到重要地位。在车用 材料产业链中,我们没有将润滑油等耗材划入进来,我们一般是指与汽车制造 相关的一些材料。化工材料在汽车领域中的使用广泛,一般是通过塑料、橡胶、 膜、纤维的方式应用在车身、结构件、外饰、内饰、织物、车窗等部位。产业链研究重点:我们认为汽车材料产业链研究的重点之一,在于汽车零部件产业链的国产化进 程。因为引进国外技术是汽车行业能够迅速发展的重要推动因素,无论是过去 的引入大众汽车生产线,还是最近的引进特斯拉工厂,都是极大拉动了国内汽 车整车以及汽车零部件产业链国产化的进程。从长期来看,汽车零部件级材料 国产化无疑是必然的趋势,那么对于国产材料而言,能否进入到各大汽车零部 件产业链当中,就决定了未来若干年的竞争赛道的空间。我们推荐关注:金发科技、道恩股份纺服材料产业链 纺织服装行业是我国化工传统且非常重要的下游应用领域,也是国内的支柱产 业之一。与二级市场相关的纺织服装材料一般包括纤维、染料、纺织印染助剂 和人造皮革及助剂等。产业链研究重点:纺服材料产业链的重点产品无疑是化纤和染料,因为这两个产品催生了如浙江 龙盛和恒力石化等化工行业龙头企业。特别是化纤行业,江浙地区的几大涤纶 长丝巨头在激烈的市场竞争中不断做大产能规模,同时向上游原油炼化环节突 破,目前已经形成了具备世界竞争力的一体化产业链项目。染料行业虽然受限 于产品的行业规模较小,但是在更早的时候就已经完成了市场份额的集中。几 大染料龙头公司无论是在产品制造工艺上,还是在市场渠道上都建立了较高的 门槛,因此染料行业的整体盈利状况明显优于其他化工产品。我们推荐关注:恒力石化、浙江龙盛、闰土股份、东方盛虹 农化产品产业链 农化产品产业链同样是传统且重要的化工子产业链,我们研究最多的农产产品 主要有农药、化肥和其他农资产品(以地膜为代表),其中农药可以根据用途分 为除草剂、杀虫剂、杀菌剂和植物调节剂,而化肥则通常指氮磷钾肥以及按比 例调节混合后的复合肥,其他农资产品我们主要选取未来对降解塑料潜在使用 量较大的地膜产品。产业链研究重点:农化产品产业链的研究重点无疑是农药和化肥,但是二者之间研究重点又有所 不同。农药因为种类多、技术门槛高、工艺相对复杂、安全生产要求较高,同 时每个产品的市场空间较小,难以在单一产品上产生农化巨头企业。因此农药 行业在发展的过程中,必然会产生综合性、平台化的农药企业,在研究过程中 我们需要重点从技术工艺以及生产管理的角度去研究企业的核心竞争力。国内 农药行业主要是以制造原药为主,并且在全球市场都极具竞争力,但是在附加 值更高的农药制剂行业并没有太大的竞争力,未来或许有国内农药巨头在制剂 领域有所突破。我们推荐关注:华鲁恒升、新洋丰、扬农化工、国光股份 新能源材料产业链 新能源行业近 10 多年来发展迅速,无论是之前的风电和光伏发电,还是近年来 随新能源汽车产业迅速发展的锂电池,对化工材料的需求量也日益增长,且产 品性能要求逐步提升,适合行业新进入者,近年来产生了较多的明星化工企业。产业链研究重点:锂电池材料是当前新能源材料产业链的热门产品。化工产品在风电产业中应用 较少,主要是与叶片相关的玻纤以及碳纤维复合材料。在光伏产业中应用较多, 但是并不是整个产业链的核心环节,因此虽然需求量比较大,但是产品的技术 含量并不复杂,产品的平均毛利率也较为一般。相比之下,在当前锂电池行业 当中,材料的性能与技术路线决定了锂电池的整体电池密度以及安全性能,是 整个产业链中非常重要的环节,且相关产品的性能及生产技术仍在持续往前发 展,容易产生业绩增速亮眼的明星化工企业。比如恩捷股份(湿法隔膜)、新宙 邦(电解液)、天奈科技(导电剂)都是因为产品技术领先同行,且进入到锂电 池核心产业链,因此近年发展迅速,生产规模和盈利能力迅速提升。未来随着特斯拉产业链对国内新能源汽车行业的带动作用,国内动力锂电池行 业未来仍有较大的发展空间,相关的锂电池材料仍值得长期重点研究。我们推荐关注:恩捷股份、新宙邦、天奈科技、蓝晓科技 电子化学品产业链 电子化学品是近年来发展最为迅速的化工子产业链之一,这背后的主要推动力 量就是国产电子产业链的迅速发展。电子化学品主要应用在半导体、平面显示、 PCB 板以及电容器几个电子产业链上的核心产品。其中半导体和平面显示相关 的化学品由于目前国产化率相对较低,加上国家政策大力支持发展相关产业, 因此与之相关的国产半导体材料和显示材料(LCD 和 OLED)也备受资本市场 的关注。其中我们在今年 1 月份发布了国产半导体材料产业链的梳理报告,对当前产业 链的进展情况以及相关投资标的都进行了梳理,详见《国信证券-半导体材料专题 报告:市场空间巨大,国产替代大有所为-20200109》。产业链研究重点: 当前研究重点应该关注相关产品的市场空间测算,以及下游核心制造商的产业 链的国产化状况。在电子产业链当中,一般会有产业链核心企业(往往并不是 电子化学品供应商)占据强势地位,如苹果产业链、华为产业链等。因此需要 关注在这些强势企业所在的供应链体系,以及在这些供应链中核心元器件供应 商(例如台积电、高通、中芯国际等核心芯片供应商)的电子材料采购情况。 因为认证体系的存在,一旦能够进入到核心供应链体系当中,是能够享受到整 个电子产业链迅速发展的时代机遇。 在电子产业链核心部件的制造过程中需要用到大量的化学材料,因此电子化学 品的种类较多,但是用量较小且技术门槛较高,这也使得生产企业在突破一个 方向的电子化学品后,很容易快速占领该细分方向的市场份额,之后就会遇到 市场空间的瓶颈,不得不增加研发资源增加开发种类的电子化学品。因此电子 化学品行业最终能保持长期快速发展的企业,一定是需要具备强大的研发平台, 以及具有平台化的产品布局,能够在多个产品体系都做到市场份额前列。 我们推荐关注:鼎龙股份、安集科技、巨化股份、江化微、雅克科技、华特气 体、昊华科技、强力新材、飞凯材料、联瑞新材、容大感光。 纵向大产业链 从纵向的角度去划分产业链,其实有点类似以核心产品的角度去划分。但是之 前列举的多个核心产品划分的子产业链,纵向程度较短,并且很少有企业能从 上游原材料环节一直延伸到终端制品环节。目前国内化工行业中,产业链条最 长、一体化程度最高、最受资本市场关注的就是几大民营炼化项目,因此我们 单独列出了这条纵向大产业链。 石油-炼化-化纤产业链 这条产业链是典型的从下游逐步向上游拓展的成功案例。因为纺织服装行业对 化学纤维的需求量巨大,特别是涤纶长丝和锦纶,产业主要集中在华东地区(江 苏、浙江、福建等地),因此相关的化纤生产企业数量众多且以民营为主,在多轮激烈的市场竞争之后最终形成了几大民营涤纶丝巨头企业。这些企业在不断 扩大自身的化纤产能规模之后,对上游原材料的需求量也随之加大,激烈的市 场竞争使得生产企业不断追求更低的制造成本。因此自建上游原材料项目,保 障下游产品的原材料供应环节,成为几大涤纶民营企业最后不约而同的战略选 择。以涤纶长丝为例,从 PTA 到 PX,再到上游进口原油炼制烯烃和芳烃,最 终打造了一条从原油到纤维的完整产业链,这无疑是国内化工行业发展几十年 以来的重要成果。 产业链研究重点:这条纵向大产业是在涤纶化纤产业链的基础上升级而来,而随着几大涤纶丝巨 头企业纷纷成功打造一体化产业链,这条产业链的研究重点将逐步变成 2 点: 炼厂的综合运营能力和聚酯的需求增速,中间环节的各种化工品的景气波动将 逐步消化在产业链内部。因此聚酯在纺织以及包装行业中的需求情况能够比较 大程度决定这条产业链的整体景气程度,而炼厂的综合运营能力则决定了聚酯 的原材料成本。我们推荐关注:恒力石化 化工产业链发展趋势仍以“去瓶颈”为主要发力点上游加大原油勘探开采力度,保障基础原料供应。 加大油气勘探开发是保障国家能源安全的重大任务,也是国内化工产业链上游 原材料端最重要的产业瓶颈。三桶油未来资本开支与我国石油新增需求相关。 油气资源是油气公司的核心优势。当油气公司决策层认为油价上行、加大资本 开支能提升公司长期价值,或政府政策要求保障能源供应安全的情形下,市场 通常会预期石油公司未来的资本开支有望增加。我们认为,三桶油作为国企, 加大油气勘探开发资本开支的力度主要取决于国家高层政策导向。在能源安全 日益形势日益严峻,原油进口依存度持续攀升的背景下,加大油气勘探开发已 成为保障国家能源安全的政治任务。因而,三桶油未来资本开支不仅与油价紧 密相连,更与我国新增油的需求相关。我国油气消费量快速增长,对外依存度逐年攀升。我国油气对外依存度逐年攀 升,创下历史新高。2018年我国原油表观消费量为6.48亿吨,同比增长6.95%, 产量 1.89 亿吨,进口量为 4.62 亿吨,出口量 263 万吨,对外依存度高达 71%。 2018 年我国天然气表观消费量达到 2833 亿方,同比增长 18.3%,进口量 1257 亿方,出口量 34 亿方,对外依存度达到 43%。油气供给形势严峻,油气增储上产势在必行。中国油气进口来源虽然多元化, 但仍集中在中东等少数地缘政治不稳定区域。目前中国石油进口主要来源于俄 罗斯、安哥拉、沙特、伊拉克、阿曼和伊朗等国家。从来源国地理分布来看, 主要集中在北非、中东和亚太地区。从原油进口量来看,中国石油有 70%~80% 进口量需要经过霍尔木兹海峡和马六甲海峡,一旦发生战事或被经济封锁,除 了海峡容易受到控制,海上运输风险也较大。因此,当前我国油气供给面临严 峻的挑战,油气增储上产势在必行。2019 年三桶油资本开支快速提升,原油产量有望扭转连续三年下滑态势。2019 年三桶油纷纷增加资本开支及勘探开发投资预算,2019 年国内勘探开发资本支 出基本恢复至 2012 年水平。其中,中国石油、中国石化、中国海油计划 2019 年资本开支 3006、1263、760 亿元,同比分别+17%、+16%、+21%,其中, 勘探与开发板块资本开支分别为 2282、596、760 亿元,同比+16%、41%、 +21%。据国家能源局的数据,2019 年前三季度我国油气资源增储上产已取得 明显突破。国内原油产量达 1.43 亿吨,同比增长 1.2%,扭转了连续三年下滑 态势;天然气产量 1277 亿立方米,同比增长 9.5%,增速较上年同期加快 3.3个百分点。2020-23 年三桶油勘探开发资本开支有望延续增长,油服景气周期有望持续。我们预计,为推动七年行动计划顺利执行,2020 年国内勘探开发资本支出仍将 同比增加 20%左右,达到 2013 年水平。从 8-10 年的设备更替和资本投资驱动 周期看,本轮油服复苏周期有望在 2023 年之前保持景气向上。油服公司的业绩与三桶油资本开支预期高度挂钩,行业景气有望持续,推荐关 注中海油服,海油工程。中游提高烯烃、芳烃等石化产品的自给率,降低生产成本 由于国内化工行业过去发展迅速,对烯烃、芳烃等基础石化原材料的需求空间 巨大,但是受制于上游原油长期依赖于进口,国内烯烃和芳烃的进口依赖度较 高。以乙烯为例,2017 年国内乙烯需求当量约 4320 万吨(来源于乙烯年会, 下游乙烯衍生品折合为乙烯需求当量),乙烯衍生物净进口量折合乙烯当量占乙 烯当量消费量的 50%左右。烯烃、芳烃、甲醇、乙二醇等关键石化原材料的自 给率提升,是化工行业当前重要的产业瓶颈。从三大化工原料出发,石油炼化、轻烃裂解、煤制烯烃三大路线同时发力,近 年国内大型石化项目纷纷落地,烯烃、芳烃等重要石化材料的自给率逐步提升, 充分保障了产业链下游环节的原料供应问题。推荐重点关注恒力石化、万华化学、东华能源、宝丰能源。下游新材料制品环节向高端领域持续突破,加速国产化替代进程 化工产业链上游和中游在保障国内基础原材料的充分供应之后,从产业链的角 度来说,最为受益的就是下游制品环节,原材料端将减轻生产成本的压力。根 据国家统计局公布的数据,化工产业链下游环节的橡胶和塑料制品行业的利润 增速保持连续增长的态势(前 10 月累计同比+13.9%),其他环节的利润增速仍 保持负增长,特别是产业链上游环节的石油加工、炼焦及核燃料加工业的利润 增速仍大幅下滑。化工产业链内部利润向下游转移的趋势较为明显,我们认为 化工产业链下游环节将长期受益于这个趋势,业绩持续改善。从需求端来看,化工产业链下游环节的景气程度与各个应用领域的需求增速关 联较为密切。当前国内产业向高端科技制造业升级的趋势明显,新能源、电子 通讯、高端芯片、平面显示等行业是目前发展速度最快,最受市场关注的行业。 而目前这些高端科技产业链中使用到的关键新材料仍主要依赖于从日韩台美欧 等地区进口,在国内产业升级的趋势推动之下,新材料国产化替代进程加速, 国内高端精细化学品努力“去瓶颈”,迎来发展良机。我们看好锂电池材料、电子化学品、碳纤维复合材料、胶黏剂、降解塑料、特 种新材料等品种,建议关注金发科技、回天新材、蓝晓科技、恩捷股份等。……(报告来源:国信证券)如需报告原文档请登录【未来智库】。

无为

半导体材料行业深度报告:疫情之下,材料崛起

如需报告请登录【未来智库】。1、为什么看好半导体材料投资机会目前,新冠肺炎疫情正在全球蔓延。欧美、日本以及韩国等国家正经受疫情爆发的 考验,而我们国内由于得到国家的强力控制,目前疫情已初步得到控制。国外疫情 的爆发,将对半导体行业的格局造成一定影响,特别是日本及欧美疫情的加剧,将 影响半导体材料供给。而国内疫情由于得到良好的控制,并且在一些半导体材料的 细分领域,国内的公司已实现部分国产替代,在供给方面我们先发优势,解晶圆代 工厂燃眉之急。 据中证报消息,国家大基金二期三月底可以开始实质投资。国家大基金是半导体行 业风向标,国家大基金二期将更加注重对半导体材料及设备的投资。大基金二期以 半导体产业链最上游的材料及设备为着力点,推动整个半导体行业的发展,加速国 产替代的进程,国内半导体材料公司将迎来黄金发展期。1.1 欧美及日本疫情加剧 半导体材料供给或将受限 截至 3 月 14 日 14:30 分,海外新冠肺炎确诊病例累计确诊 64617 例,较上日增 加 10393 例,累计死亡 2236 例。海外疫情正处于爆发期,特别是意大利、日本、 美国、德国、法国及韩国等国家,新冠疫情正愈演愈烈。在全球半导体材料领域,日本占据绝对主导地位。去年日韩贸易战中,日本限制含 氟聚酰亚胺、光刻胶,以及高纯度氟化氢这三种材料的对韩出口,引起了整个半导 体领域的震动。在 2019 年前 5 个月,日本生产的半导体材料占全球产量的 52%。 同期,韩国从日本进口的光刻胶价值就达到 1.1 亿美元。据韩国贸易协会报告显示, 韩国半导体和显示器行业在氟聚酰亚胺、光刻胶及高纯度氟化氢对日本依赖度分别 为 91.9%、43.9%及 93.7%。在半导体制造过程包含的 19 种核心材料中,日本市占率超过 50%份额的材料就占 到了 14 种,在全球半导体材料领域处于绝对领先地位。 欧美及日本疫情的加剧,将影响全球半导体材料的供给。目前虽然没有欧美及日本 半导体公司受疫情影响的官方报道,但我们认为疫情必将影响这些地区半导体公司 的经营情况。在疫情影响下,韩国的三星、SK 海力士等半导体公司多次停产隔离, 国内的众多公司也延迟复工。因此,这些处于疫情爆发期国家的公司也必将受疫情 影响。当地时间 13 日下午 3 点 30 分,美国总统特朗普已宣布进入“国家紧急状态” 以应对新冠肺炎疫情。受疫情影响,多国采取封城措施,这将影响半导体材料的运输。韩国、意大利等国 先后采取封城措施,来抑制新冠疫情的爆发。封城后将对货物的运输带来极大的不 便,这将影响到半导体材料的运输。国内半导体材料公司占据天时、地利及人和,国产替代将加速。得益于国家强有力 的调控措施,以及国内群众的高度配合,国内疫情已初步得到控制,多省市已连续 多天未有新病例。目前,国内大多企业已经复工,并开始逐步提升产能。同时,中 国是制造业大国,国内半导体制造公司众多,国内厂商的产品在运输上具有相对便 利性,特别是在国外封城下,这种便利性能缓解众多晶圆代工厂的燃眉之急,国产 替代进程将加速。1.2 大基金二期即将开启投资 半导体材料必将受益 据中证报消息,国家大基金二期三月底应该可以开始实质投资。大基金二期于 2019 年 10 月 22 日注册成立,注册资本为 2041.5 亿元。从目前大基金一期投资的情况来看,一期半导体设备和半导体材料领域合计投入金 额 57.7 亿元,占大基金一期投资总额的 4.2%。而在全球半导体产业中,2018 年 半导体设备销售额 645.3 亿美元,半导体材料销售额 519.4 亿美元,半导体设备和 半导体材料合计占全球半导体销售额比重超过 20%。大基金一期在半导体设备和 半导体材料领域的投入相对较少。在投资项目上,大基金一期重点投资半导体制造和设计行业,大基金二期将更关注 半导体材料及半导体设备的投资。特别是受日韩贸易战事件影响,国人更加清醒认 识到半导体材料的重要性。即使是被认为半导体强国的韩国,有着三星、SK 海力 士等国际半导体巨头,但由于在半导体材料领域没有话语权,也将受到极大的制约。 半导体设备和半导体材料均处于半导体产业链的上游,在整个半导体产业中有着至 关重要的作用。目前国内关键设备及材料主要依赖进口,推动半导体设备和材料的 发展势在必行。1.3 半导体材料领域我们看好哪些标的 半导体材料属于高技术壁垒行业,国内由于起步晚,整体相对落后,目前半导体材 料高端产品大多集中在美国、日本、德国等国家和地区生产商。但在一些细分领域, 国内已有企业突破国外技术垄断,在市场占有一定的份额,如国内抛光液龙头安集 科技、特种气体龙头华特气体、超纯试剂及光刻胶领域龙头晶瑞股份、近期收购 LG 化学旗下彩色光刻胶事业布局显示光刻胶领域的雅克科技、国内靶材龙头江丰电子 等。在投资策略上,我们建议关注半导体材料各细分领域龙头企业,特别是进入长江存 储产业链的材料公司。大基金二期明确投资长江存储,助力长江存储产能提升。长 江存储已开启一期产能扩张,目前的产能在 1~2 万片/月,一期目标产能 10 万片/ 月。长江存储 64 层 TLC 3D NAND 闪存已经正式量产,当前的核心任务是产能爬 坡,需要尽早达成 64 层三维闪存产品月产能 10 万片。根据长江存储的规划,未来 还将开启二期及三期产能扩张,二期项目产能将达到 30 万片/月,最终三期项目预 计在 2030 年完成,产能将提升到 100 万片/月。长江存储产业链半导体材料标的公司,推荐关注安集科技及华特气体。2018 年长 江存储是安集科技的第三大客户,为安集科技贡献 1891 万元的收入。华特气体方 面,2018 年公司来自长江存储的收入为 1206.5 万元,是公司的第 4 大客户,2019 年上半年来自长江存储的收入为 1032 万元,占比 2.64%,上升为公司第二大客户。 安集科技:公司是国内 CMP 抛光液及光刻胶去除剂龙头,特别是在抛光液领域, 是国内目前唯一供应商,产品已经实现向包括中芯国际、台积电、长江存储等国 际一线代工厂供货。长江存储产能大幅提升,安集科技将直接受益。特别是长江 存储对钨抛光液的需求大,安集科技已建有钨抛光液生产线与之对接,未来钨抛 光液的供应将大幅放量。钨抛光液的毛利率在 80%以上,放量将大幅提升公司的 盈利能力。 华特气体:公司是国内首家打破高纯六氟乙烷、高纯三氟甲烷等多种产品进口制 约的公司。Ar/F/Ne、Kr/Ne、Ar/Ne 和 Kr/F/Ne 等 4 种混合气于 2017 年通过全 球最大的光刻机供应商 ASML 公司的产品认证。目前,公司是我国唯一通过 ASML 公司认证的气体公司,亦是全球仅有的上述 4 个产品全部通过其认证的四 家气体公司之一。公司产品实现了对国内 8 寸以上集成电路制造厂商超过 80%的客户覆盖率,客户包含中芯国际、华虹宏力、长江存储、台积电、 京东方等众多国际知名企业,并进入了英特尔(Intel)、美光科技(Micron)、 德州仪器(TI)、海力士(Hynix)等全球领先的半导体企业供应链体系。此外,建议关注长江存储其他国内半导体材料相关标的,如已通过长江存储正片认 证的国内大硅片龙头上海新昇,国内抛光垫龙头鼎龙股份,通过并购进入电子材料 领域的雅克科技,半导体靶材龙头江丰电子,以及国内湿化学品及光刻胶领域龙头 晶瑞股份。2. 半导体材料:半导体产业基石2.1 半导体材料是半导体产业链重要支撑 在整个半导体产业链中,半导体材料处于产业链上游,是整个半导体行业的重要支 撑。在集成电路芯片制造过程中,每一个步骤都需要用到相应的材料,如光刻过程 需要用到光刻胶、掩膜版,硅片清洗过程需要用的各种湿化学品,化学机械平坦化 过程需要用的抛光液和抛光垫等,都属于半导体材料。半导体材料是半导体行业的物质基础,材料质量的好坏决定了最终集成电路芯片质 量的优劣,并影响到下游应用端的性能。因此,半导体材料在整个产业链中有着重 要地位。2.2 2018 年全球半导体材料销售额创历史新高 2018 年全球半导体材料销售额 519.4 亿美元,销售额首次突破 500 亿美元创下历 史新高。 2018 年全球半导体材料销售增速 10.65%,也创下自 2011 年以来的新高。全球半导体材料销售额增速与半导体销售增速具有较高的一致性,2017 年两者同 步高速增长的原因是DRAM市场的迅猛发展, 2017年DRAM实际增速高达77%。 2018 年受供求关系影响,存储市场增速减缓,半导体销售额及半导体材料销售额 增速均下降。半导体材料销售额占全球半导体销售额比例在 2012 年达到峰值,占比超过 16%, 近些年逐步下降,2018 年占比约 11%。占比下降的主要原因是 2013 年开始受益 于存储市场的快速增长,半导体销售额增速开始回升,2013-2018 年半导体销售增 速一直高于半导体材料销售增速。近年来,中国大陆半导体材料的销售额保持稳步增长。2018 年大陆半导体材料销 售额 84.4 亿美元,增速 10.62%,销售额创下历史新高。受益于国内半导体行业高景气度带动,大陆在半导体材料销售额增速方面一直领先 全球增速。受益于国内晶圆厂的大量投建,国内半导体材料的需求将加速增长。据SEMI估计, 2017-2020全球将有62座新晶圆厂投产,其中26座坐落中国大陆,占总数的42%。 半导体材料属于消耗品,随着大量晶圆厂建设完成,半导体材料的消耗量将大大增 加,将有力促进国内半导体材料行业的发展,国内半导体材料销售额全球占比将进 一步提升。我们预计 2019-2021 年,大陆半导体销售额分别为 94.5 亿美元、108.6 亿美元和 128 亿美元,增速分别为 12%、15%和 17.8%。从全球国家和地区来说,中国台湾依然是半导体材料消耗最大的地区。2018 年台 湾地区半导体销售额 114.5 亿美元,全球占比 22.04%。中国大陆占比 16.25%排名 全球第三,略低于 16.79%的韩国。2.3 晶圆制造材料是半导体材料核心 按制造工艺不同,半导体材料可以分为晶圆制造材料和封装材料。其中,晶圆制造 材料由于技术要求高,生产难度大,是半导体材料的核心。2018 年晶圆制造材料 全球销售额为 322 亿美元,占全球半导体材料销售额的 62%。晶圆制造材料全球 销售额增速 15.83%,高于全球半导体材料销售额增速。晶圆制造材料包含硅、掩膜版、光刻胶、电子气体、CMP 抛光材料、湿化学品、 溅射靶材等,其中硅的占比最高,整个晶圆制造材料超过三分之一。2.4 半导体材料技术壁垒高 国内自给率低 半导体材料属于高技术壁垒行业,特别是晶圆制造材料,技术要求高,生产难度大。目前,半导体材料高端产品大多集中在美国、日本、德国、韩国、中国台湾等国家 和地区生产商。国内由于起步晚,技术积累不足,整体处于相对落后的状态。目前, 国内半导体材料主要集中在中低端领域,高端产品基本被国外生产商垄断。如硅片, 2017 年全球五大硅片厂商占据了全球 94%的市场份额。近年来国内半导体材料生产商加大了研发投入,大力推进半导体材料的研发及生产, 力争实现国产替代。目前在部分细分领域,已经突破国外垄断,实现规模化供货。 如 CMP 抛光材料的龙头企业安集科技,公司化学机械抛光液已在 130-28nm 技术 节点实现规模化销售,主要应用于国内 8 英寸和 12 英寸主流晶圆产线;溅射靶材 龙头江丰电子,7 纳米技术节点实现批量供货,同时还满足了国内厂商 28 纳米技 术节点的量产需求。3. 半导体材料:品种多 技术壁垒高3.1 半导体材料--硅 3.1.1 硅是最重要的半导体材料 硅是半导体行业中最重要的材料,约占整个晶圆制造材料价值的三分之一。目前, 90%以上的集成电路芯片是用硅片作为衬底制造出来的。整个半导体产业就是建立 在硅材料之上的。硅片质量对半导体制造至关重要。在硅片上制造的芯片最终质量与采用硅片的质量 有直接关系。如果原始硅片上游缺陷,那么最终芯片上也肯定存在缺陷。按晶胞排列是否规律,硅可分为单晶硅和多晶硅。单晶硅晶胞在三维方向上整齐重 复排列,而多晶硅晶胞则呈不规律排列。单晶硅在力学性质、电学性质等方面,都 优于多晶硅。集成电路制造过程中使用的硅片都是单晶硅,因为晶胞重复的单晶结 构能够提供制作工艺和器件特性所要求的电学和机械性质。硅片的制备从晶体生长开始,形成单晶锭后经过修整和磨削再切片,再经过边缘打 磨、精研、抛光等步骤后,最后检查得到的硅片是否合格。3.1.2 单晶硅生产 单晶生长分为直拉(CZ)法和区熔(FZ)法,直拉法是目前主流的生长方法,占 据 90%市场。 直拉法:工艺成熟,更容易生长大直径单晶硅,生长出的单晶硅大多用于集成电 路元件。 区熔法:由于熔体不与容器接触,不易污染,因此生长出的单晶硅纯度较高,主 要用于功率半导体。但区熔法较难生长出大直径单晶硅,一般仅用于 8 寸或以下 直径工艺。3.1.3 大直径是硅片未来发展方向 大尺寸硅片是硅片未来发展的趋势。大尺寸硅片带来的优点有两个: 单片硅片制造的芯片数目越多:在同样的工艺条件下,300mm 半导体硅片的可 使用面积超过 200mm 硅片的两倍以上,可使用率(衡量单位晶圆可生产的芯片 数量的指标)是 200mm 硅片的 2.5 倍左右,大尺寸硅片上能制造的芯片数目更 多; 利用率更高:在圆形硅片上制造矩形的硅片会使硅片边缘处的一些区域无法被利 用,从而带来部分浪费,随之晶圆尺寸的增大,损失比就会减小。随着半导体技术的发展和市场需求的变化,大尺寸硅片占比将逐渐提升。目前 8 英 寸硅片主要用于生产功率半导体和微控制器,逻辑芯片和存储芯片则需要 12 英寸 硅片。2018 年 12 英寸硅片全球市场份额预计为 68.9%,到 2021 年占比预计提升 至 71.2%。3.1.4 硅片市场情况 半导体硅片投入资金多,研发周期长,是技术壁垒和资金壁垒都极高的行业。由于 下游客户认证时间长,硅片厂商需要长时间的技术和经验积累来提升产品的品质, 满足客户需求,以获得客户认证。目前全球硅片市场处于寡头垄断局面。2018 年全球半导体硅片行业销售额前五名 企业的市场份额分别为:日本信越化学 28%,日本 SUMCO 25%,中国台湾环球 晶圆 14%,德国 Siltronic 13%,韩国 SK Siltron 9%,前五名的全球市场市占率接 近 90%,市场集中度高。近年来全球半导体硅片出货面积稳步增长。2018 年全球半导体硅片出货面积达 127.3 亿平方英寸,同比 2017 年增长 7.79%;销售金额为 113.8 亿美元,同比 2017 年增长 30.65%,单价每平方英寸 0.89 美元,较 2017 年增长 21%。目前 12 英寸和 8 英寸硅片是市场主流。2018 年全球 12 英寸硅片需求均值在 600-650 万片/月,8 英寸均值在 550-600 万片/月。12 英寸硅片主要被 NAND 和 DRAM 需求驱动,8 英寸主要被汽车电子和工业应用对功率半导体需求驱动。长期 看 12 英寸和 8 英寸依然是市场的主流。国内积极布局大硅片生产,规划产能大。截至 2018 年年底,根据各个公司已量产 产线披露的产能,8 英寸硅片产能已达 139 万片/月,12 英寸硅片产能 28.5 万片/ 月。预计 2020 年 8 英寸硅片实际月需求将达到 172.5 万片,2020 年 12 英寸硅片 实际需求为 340.67 万片/月。为满足国内大硅片的需求,我国正积极布局大硅片的 生产。目前公布的大硅片项目已超过 20 个,预计总投资金额超过 1400 亿,到 2023 年 12 英寸硅片总规划产能合计超过 650 万片。从国内硅片生产商来看,目前国内硅片生产商主要有上海新昇、中环股份、金瑞泓 等企业。上海新昇 12 英寸硅片产品已经通过华力微和中芯国际的认证,正片 2019 年已得到长江存储的采购,目前处于国内领先地位。中环股份一期于 2019 年 2 月 进行试生产 8 英寸硅片, 7 月将进行规模化投产;12 英寸功率硅片生产线将在 2019 年下半年进行设备安装调试。二期将于 2020 年开工建设,投资 15 亿美元,建设两 条 12 英寸生产线,月产能 35 万片。3.2 光刻胶 3.2.1 光刻原理 光刻是整个集成电路制造过程中耗时最长、难度最大的工艺,耗时占 IC 制造 50% 左右,成本约占 IC 生产成本的 1/3。光刻胶是光刻过程最重要的耗材,光刻胶的质 量对光刻工艺有着重要影响。光刻是将图形由掩膜版上转移到硅片上,为后续的刻蚀步骤作准备。在光刻过程中, 需在硅片上涂一层光刻胶,经紫外线曝光后,光刻胶的化学性质发生变化,在通过 显影后,被曝光的光刻胶将被去除,从而实现将电路图形由掩膜版转移到光刻胶上。 再经过刻蚀过程,实现电路图形由光刻胶转移到硅片上。在刻蚀过程中,光刻胶起 防腐蚀的保护作用。3.2.2 光刻胶分类 根据化学反应机理和显影原理的不同,光刻胶可以分为负性胶和正性胶。对某些溶 剂可溶,但经曝光后形成不可溶物质的是负性胶;反之,对某些溶剂不可溶,经曝 光后变成可溶的为正性胶。从需求端来看,光刻胶可分为半导体光刻胶、面板光刻胶和 PCB 光刻胶。其中, 半导体光刻胶的技术壁垒最高。3.2.3 光刻胶技术壁垒 光刻胶是半导体材料中技术壁垒最高的品种之一。光刻胶产品种类多、专用性强, 是典型的技术密集型行业。不同用途的光刻胶曝光光源、反应机理、制造工艺、成 膜特性、加工图形线路的精度等性能要求不同,导致对于材料的溶解性、耐蚀刻性、 感光性能、耐热性等要求不同。因此每一类光刻胶使用的原料在化学结构、性能上 都比较特殊,要求使用不同品质等级的光刻胶专用化学品。光刻胶一般由 4 种成分组成:树脂型聚合物、光活性物质、溶剂和添加剂。树脂是 光刻胶中占比最大的组分,构成光刻胶的基本骨架,主要决定曝光后光刻胶的基本 性能,包括硬度、柔韧性、附着力、耐腐蚀性、热稳定性等。光活性物质是光刻胶 的关键组分,对光刻胶的感光度、分辨率等其决定性作用。分辨率、对比度和敏感度是光刻胶的核心技术参数。随着集成电路的发展,芯片制 造特征尺寸越来越小,对光刻胶的要求也越来越高。光刻胶的核心技术参数包括分 辨率、对比度和敏感度等。为了满足集成电路发展的需要,光刻胶朝着高分辨率、高对比度以及高敏感度等方向发展。3.2.4 光刻胶市场情况 目前全球光刻胶市场基本被日本和美国企业所垄断。光刻胶属于高技术壁垒材料, 生产工艺复杂,纯度要求高,需要长期的技术积累。日本的 JSR、东京应化、信越 化学及富士电子四家企业占据了全球 70%以上的市场份额,处于市场垄断地位。光刻胶市场需求逐年增加,2018 年全球半导体光刻胶销售额 12.97 亿美元。随着 下游应用功率半导体、传感器、存储器等需求扩大,未来光刻胶市场将持续扩大。由于光刻胶的技术壁垒较高,国内高端光刻胶市场基本被国外企业垄断。特别是高 分辨率的 KrF 和 ArF 光刻胶,基本被日本和美国企业占据。国内光刻胶生产商主要生产 PCB 光刻胶,面板光刻胶和半导体光刻胶生产规模相 对较小。国内生产的光刻胶中,PCB 光刻胶占比 94%,LCD 光刻胶和半导体光刻 胶占比分别仅有 3%和 2%。国内光刻胶市场规模保持稳定增长,从 2011 年的 30.4 亿元增长到 2018 年的 62.3 亿元,复合增长率达 11.59%。预计 2018 年国内光刻胶市场规模约为 62.3 亿元。国内光刻胶需求量方面,2011 年光刻胶需求量为 3.51 万吨,到 2017 年需求量为 7.99 万吨,年复合增长率达 14.69%。 2018 年国内光刻胶需求量预计为 8.44 万吨。国内光刻胶需求量远大于本土产量,且差额逐年扩大。由于国内光刻胶起步晚,目 前技术水平相对落后,生产产能主要集中在 PCB 光刻胶、TN/STN-LCD 光刻胶等 中低端产品,TFT-LCD、半导体光刻胶等高技术壁垒产品产能极少,仍需大量进口, 从而导致国内光刻胶需求量远大于本土产量。国内 PCB 光刻胶国产替代进度快,面板光刻胶和半导体光刻胶与国外相比仍有较 大差距。从技术水平来看,PCB 光刻胶是目前国产替代进度最快的,飞凯材料已经 在高端的湿膜光刻胶领域通过下游厂商验证;面板光刻胶进度相对较快,目前永太 科技 CF 光刻胶已经通过华星光电验证;半导体光刻胶目前技术较国外先进技术差 距较大,仅在 G 线与 I 线有产品进入下游供应链,北京科华目前 KrF(248nm)光 刻胶目前已经通过中芯国际认证,ArF(193nm)光刻胶正在积极研发中。3.3 掩膜版 掩膜版(Photomask),又称光罩、光掩膜、光刻掩膜版、掩模版等,是下游行业 产品制造过程中的图形“底片”,是承载图形设计和工艺技术等知识产权信息的载 体。在光刻过程中,掩膜版是设计图形的载体。通过光刻,将掩膜版上的设计图形 转移到光刻胶上,再经过刻蚀,将图形刻到衬底上,从而实现图形到硅片的转移。 掩膜版是光刻过程中的重要部件,其性能的好坏对光刻有着重要影响。3.3.1 掩膜版结构 掩膜版的构造如下图所示,其材质根据需求不同,可选择不同的玻璃基板。目前随 着工艺技术的精进,以具有低热膨胀系数、低钠含量、高化学稳定性及高光穿透性 等特质的石英玻璃为主流,在其上镀有约 100nm 的不透光铬膜作为 I 作层及约 20nm 的氧化铬来减少光反射,增加工艺的稳定性。掩模板之所以可作为图形转移的一种模板,关键就在于有无铬膜的存在,有铬膜的 地方,光线不能穿透,反之,则光可透过石英玻璃而照射在涂有光刻胶的晶片上, 晶片再经过显影,就能产生不同的图形。也正是由于掩模板可用于大量的图形转移, 所以掩模板上的缺陷密度将直接影响产品的优品率。3.3.2 掩模版缺陷及保护膜 在掩膜版的制作和使用过程中,可能会出现缺陷,从而影响到后续的使用。掩模板 上的缺陷一般来自两个方面: 掩模板图形本身的缺陷:包括针孔、黑点、黑区突出、白区突出、边缘不均及刮 伤等,此部分皆为制作过程中出现的,目前是利用目检或机器原形比对等方式来 筛选; 附着在掩模板上的外来物:为解决此问题,通常在掩模板上装一层保护膜,当外 来物掉落在保护膜上时,因保护膜上物体的聚焦平面与掩模板图形的聚焦平面不 同,因此可使小的外来物不能聚焦在晶片上,而不产生影响。3.3.3 掩膜版市场情况根据 SEMI 公布数据,2018 年全球半导体掩模版销售额为 35.7 亿美元,占到总晶 圆制造材料市场的13%。预计全球半导体掩模版市场可在2020年达到40亿美元。从生产商来看,目前全球掩膜版生产商主要集中在日本和美国的几个巨头,包括日 本凸版印刷 TOPAN、日本大印刷,美国 Photronics,日本豪雅 HOYA,日本 SK 电子等。其中,Photronics、大日本印刷株式会社 DNP 和日本凸版印刷株式会社 Toppan 三家占据全球掩膜版领域 80%以上市场份额。此外,晶圆制造厂也会采取 自制方式对内提供掩膜版,如英特尔、台积电、三星等都有自制掩膜版业务。从国内来看,目前国内掩膜版制造商主要有路维光电和清溢光电,中科院微电子所、 中国电子科技集团等科研院所内部也有自制掩膜版。国内晶圆代工厂龙头中芯国际 也有自制掩膜版业务。国内光掩膜版市场规模保持稳定增长,2016 年国内市场规模为 59.5 亿元,规模较上年同期增长 4.94%。国内掩膜版供需缺口逐年扩大。2011 年国内掩膜版需求 5.09 万平方米,国内掩膜 版产量 0.87 万平方米,净进口量 4.22 万平方米,2016 年国内掩膜版需求 7.98 万 平方米,国内掩膜版产量 1.69 万平方米,供需缺口达 6.29 万平方米。目前中国大陆的平板显示行业处于快速发展期,对掩膜版行业的需求持续增加。根 据 IHS 统计测算,中国大陆平板显示行业掩膜版需求量占全球比重,从 2011 年的 5%上升到 2017 年的 32%。未来随着相关产业进一步向国内转移,国内平板显示 行业掩膜版的需求量将持续上升,预计到 2021 年,中国大陆平板显示行业掩膜版 需求量全球占比将达到 56%。3.4 电子气体 电子气体是超大规模集成电路、平面显示器件、化合物半导体器件、太阳能电池、 光纤等电子工业生产不可缺少的原材料,它们广泛应用于薄膜、刻蚀、掺杂、气相 沉积、扩散等工艺。在半导体制造过程中,几乎每一步都离不开电子气体,其质量 对半导体器件的性能有着重要影响。3.4.1 电子气体分类 纯度是电子气体最重要的指标,气体纯度常用的表示方法有两种: 用百分数表示:如 99%,99.9%,99.99%,99.9999%等; 用“N”表示:如 3N,5N,5.5N 等,数目 N 与百分数表示中的“9”的个数相 对应,小数点后的数表示不足“9”的数,如 5.5N 表示 99.9995%。根据气体纯度不同,气体可分为普通气体、纯气体、高纯气体及超高纯气体 4 个等 级。半导体制造领域,一个硅片需要经过外延、成膜、掺杂、蚀刻、清洗、封装等多项 工艺,这个过程需要的高纯电子化学气体及电子混合气高达 30 多种以上,且每一 种气体应用在特定的工艺步骤中。3.4.2 电子气体技术壁垒 电子气体的技术壁垒极高,最核心的技术是气体提纯技术。此外超高纯气体的包装 和储运也是一大难题。在半导体制造中,电子气体纯度每提升一个数量级,都会促 进器件性能的有效提升。为了得到超高纯气体,气体制造需要进行以下几个步骤: 气体分离:气体的分离方法有精馏法、吸附法和膜分离法。精馏法是应用最广泛 的方法,可分为连续精馏法和间歇精馏法。连续精馏法操作时原料液连续地加入 精馏塔内,再沸器取出部分液体作为塔底产品;间歇精馏法原料液一次加入精馏 釜中,因而间歇精馏塔只有精馏段而无提馏段。 气体提纯:气体制造通常是先将气体进行粗分离,再通过气体提纯技术来提高其 纯度。气体提纯技术主要有化学反应法、选择吸附法、低温精馏法和薄膜扩散法 等。 气体纯度检验:得到提纯后的气体,需对气体进行检测来验证其纯度。随着电子 气体纯度越来越高,纯度检验也越来越重要。气体中杂质含量检测从 10-6(ppm) 级、到 10-9(ppb)级甚至 10-12(ppt)级。 气体的充装与运输:超高纯气体对充装和运输都有特别的要求,要求使用特殊的 储运容器、特殊的气体管道及阀门接口等,避免二次污染。3.4.3 电子气体应用 在半导体行业中,电子气体作为不可或缺的原材料,在各个环节中都得到广泛应用, 如电子级硅的制备、化学气相沉积成膜、晶圆刻蚀工艺等过程,众多种类的气体都 起到了至关重要的作用。电子级硅制备 电子级硅的制备采用西门子法还原法,在制备过程中用到的气体有 HCl 和 H2等, 发生的化学反应包括:SiO2+C->Si+CO2↑;Si+HCl→SiHCl3+H2↑;SiHCl3+H2→Si+HCl。电子级硅对纯度有着极高的要求,目前纯度要求在 11N9 以上。未了得到电子级纯 度硅,制备过程中气体的纯度要求在 6N9 以上。目前国内 12 英寸 11N9 电子级硅 基本从日本进口。化学气相沉积成膜 化学气相沉积(Chemical Vapor Deposition,CVD)是利用高真空下,气体混合发 生相关化学反应最终形成膜。典型的 CVD 成膜有二氧化硅绝缘膜制备和氮化硅绝 缘膜制备。在二氧化硅绝缘膜制备中,SiH4是主要气体,采用 6N9 级别的 O2、N2O 作用辅助 气体。晶圆加工工艺中生长二氧化硅(SiO2)绝缘膜涉及的化学反应: SiH4+O2->SiO2+2H2↑;SiH4+N2O->SiO2+2N2+H2。在 氮 化 硅 绝 缘 膜 制 备 中 , 氮 化 硅 (Si3N4) 绝 缘 膜 涉 及 的 化 学 反 应 有 : 3SiH4+4NH3->Si3N4+12H2;3SiH2Cl2+4NH3->Si3N4+6HCl+6H2。目前国内在建晶圆加工产线在制备半导体膜和绝缘层的过程中涉及的电子特种气 体包括 SiH4、SiCl4、SiHCl3、SiH2Cl2、AsCl3 等原料气体,以及 H2、HCl、O2、 N2O、NH3等反应气体。在国内半导体发展的过程中,实现 6N9 以上纯度的反应气 体存在较大市场空间。晶圆刻蚀工艺 在硅基底刻蚀中,主要选用氟基气体,例如氟利昂-14(CF4),在此过程中需要刻 蚀部位的Si与CF4反应生成SiF4而除去,其化学反应式为:Si+CF4+O2->SiF4+CO2。氟利昂-116(C2F6)和氟利昂-23(CHF3)在刻蚀硅时容易产生聚合膜从而影响刻 蚀效果,但是在刻蚀 SiO2的时候不会出现此类现象,因此可用于 SiO2的刻蚀。同 时由于半导体 Si 薄膜存在各向同性的特点,刻蚀选择性差,因此后续开发中引入 氯基(Cl2)和溴基(Br2、HBr)作用,最终生成物中还包括 SiBr4和 SiCl4从而提 高选择性。目前国内在建产线汇总涉及薄膜的气体包括 CF4、C2F6、CHF3、Cl2、Br2、HBr 和 CH2F2 等,但是此类刻蚀气体用量相对较少,刻蚀过程中需与相关惰性气体 Ar、 N2等共同作用实现刻蚀程度的均匀。3.4.4 电子气体市场情况 随着集成电路制造产业的发展,全球集成电路用电子气体的市场规模也逐渐扩大。 2018 年全球集成电路用电子气体市场规模达到 45.12 亿美元,同比增长 15.93%。电子气体纯度要求高,制备难度大,目前以美国空气化工、美国普莱克斯、德国林 德集团、法国液化空气和日本大阳日酸株式会社为首的五大气体公司控制着全球 90% 以上的电子气体市场份额。国内情况:2018 年国内半导体用电子特气市场规模约 4.89 亿美元。经过 30 多年 的发展,我国半导体用电子特气已经取得了不错的成绩,中船重工 718 所、绿菱电 子、广东华特等均在 12 英寸晶圆用产品上取得了突破,并且实现了稳定的批量供 应。广东华特气体是国内首家打破高纯六氟乙烷、高纯三氟甲烷等产品进口制约的气体 公司,并率先实现了近 20 个产品的进口替代。Ar/F/Ne、Kr/Ne、Ar/Ne 和 Kr/F/Ne 等 4 种混合气于 2017 年通过全球最大的光刻机供应商 ASML 公司的产品认证。目 前,公司是我国唯一通过 ASML 公司认证的气体公司,亦是全球仅有的上述 4 个 产品全部通过其认证的四家气体公司之一。公司产品实现了对中芯国际、华虹宏力、 长江存储、台积电等国际一流代工厂的供货,并进入了英特尔(Intel)、美光科技 (Micron)、德州仪器(TI)、海力士(Hynix)等全球领先的半导体企业供应链体 系。3.5 湿化学品 湿化学品(Wet Chemicals), 是微电子、光电子湿法工艺制程中使用的各种电子化 工材料。湿化学品在半导体领域主要应用于集成电路制造过程中的清洗和腐蚀步骤, 其纯度和洁净度影响着集成电路的性能及可靠性。3.5.1 湿化学品分类 按应用领域划分,湿化学品主要应用于半导体、平板显示、太阳能以及 LED 等领 域。其中,半导体制造领域对湿化学品的要求最高,技术难度最大。为了适应电子信息产业微处理工艺技术水平不断提高的趋势,并规范世界超净高纯 试剂的标准,国际半导体设备与材料组织(SEMI)将超净高纯试剂按金属杂质、 控制粒径、颗粒个数和应用范围等指标制定国际等级分类标准。3.5.2 典型湿化学品制备 电子级硝酸 使用原料槽罐车将检测合格后的硝酸原材料输入原料罐,经过连续蒸馏塔、粗过滤 系统、双级过滤系统和自动灌装系统等提纯加工、高纯检测等工艺后,按照产品规 格检测,合格后填充入库。电子级氢氟酸 将合格的氢氟酸原料通过原料储槽输入蒸馏塔预经处理后,经过检验、过程产品检 测粗过滤、精过滤、自动灌成品检验等过程合格后由成品槽罐车运输入库。电子级氨水将检测合格后的氨水原材料输入粗过滤系统,将气体通过管路输送至吸收塔,经过 循环吸收后输入混配罐,按照过程产品检测合格后输入粗过滤系统双级过滤后输入 精过滤系统,检测合格后输入自动灌装系统灌装,按照最终产品要求检测合格后通 过水流包装线包装入库。3.5.3 湿化学品市场情况 目前全球湿化学品的市场主要分为三大块:欧美企业、日本企业、以及韩国、中国 大陆和台湾地区企业。 欧美企业:主要有德国巴斯夫(Basf)公司、美国 Ashland 公司、美国 Arch 化 学品公司、美国霍尼韦尔公司、AIR PRODUCTS、德国 E.Merck 公司、美国 Avantor Performance Materials 公司、ATMI 公司等。欧美企业占据全球 33%的 市场份额。 日本企业:主要企业包括关东化学公司、三菱化学、东京应化、京都化工、日本 合成橡胶、住友化学、和光纯药工业(Wako)、 stella-chemifa 公司等。日本企 业占全球 27%的市场份额。 韩国、中国大陆及台湾地区企业:三者占比总计 38%,其中韩国、台湾企业在生 产技术上具有一定优势,在高端市场领域与欧美、日本企业相比也有一定的竞争 力。中国大陆湿电子化学品企业距世界整体水平还有一定距离,近年来,包括格 林达在内的湿电子化学品企业持续技术创新,在个别领域已接近国际领先水平。受益于半导体、平板显示以及太阳能等下游产业的快速发展,湿电子化学品近年的 发展也非常迅速。2018 年,全球湿电子化学品市场规模约 52.65 亿美元。应用量 方面,半导体市场应用量约 132 万吨,平板显示市场应用量约 101 万吨,太阳能电 池领域应用达 74 万吨,三大市场应用量共计达到 307 万吨。预计到 2020 年,全 球湿电子化学品整体市场规模将达到 58.5 亿美元,在全球三大领域应用量达到 388 万吨,复合增长率约 12.42%。2018 年国内湿电子化学品整体市场规模 79.62 亿元,同比增速 4.09%,需求量约 为 90.51 万吨。预计到 2020 年,国内湿电子化学品市场规模有望突破 105 亿元, 需求量也将达到 147.04 万吨。随着国内半导体行业、平板显示行业以及太阳能行业的快速发展,湿电子化学品的 需求也迎来增长,促进了整个湿电子化学品行业的迅速发展。2012 年国内湿电子 化学品产量 18.7 万吨,2018 年产量达到 49.5 万吨,年均复合增长率达 17.61%。从下游领域需求细分情况来看,2018 年半导体行业湿电子化学品需求量为 28.27 万吨,平板显示行业需求量为 34.08 万吨,太阳能行业需求量为 28.16 万吨,相比 2017 年都有所增加,特别是平板显示行业,需求增加明显。国内湿电子化学品由于起步较晚,技术水平与国际先进水平有一定差距。但在某些 领域已经具备一定的竞争力。 2018 年 4 月下旬,晶瑞化学依托下属子公司年产 30 万吨的优质工业硫酸原材料 优势,并结合从日本三菱化学株式会社引进的电子级硫酸先进制造技术,投资建 设年产 9 万吨/年的电子级硫酸项目。 2018 年第三季度,湖北兴福的电子级硫酸技术攻关取得重大突破,产品品质超 越 SEMI C12 级别,与国际电子化学品最大供应商巴斯夫的产品品质处于同一级 别,并向部分国内 12 英寸晶圆厂稳定供货。 国内湿电子化学品龙头企业江化微,年产 8 万吨的超高纯湿电子化学品生产基地 已达到国际规模水平。3.6 溅射靶材 溅射靶材是物理气相沉积(PVD)工艺步骤中所必需的材料,是制备薄膜的关键材 料。溅射工艺是利用离子源产生的离子,在真空中被加速形成告诉离子流,利用高 速粒子流轰击固体表面,使得固体表面的原子脱离靶材沉积在衬底表面,从而形成 薄膜。这个薄膜的形成过程称为溅射,被轰击的固体被称为溅射靶材。靶材是溅射 过程的核心材料。3.6.1 靶材分类 溅射靶材种类繁多,依据不同的分类标准,可以有不同的类别。溅射靶材可按形状 分类、按化学成份分类以及按应用领域分类。溅射靶材的应用领域广泛,由于应用领域不同,溅射靶材对金属材料的选择和性能 要求都有所不同。其中,半导体芯片对靶材的技术要求最高,对金属的纯度、内部 微观结构等都有极高的标准。3.6.2 靶材制备方法 按生产工艺的不同,溅射靶材的制备可分为熔融铸造法和粉末冶金法。熔融铸造法 熔融铸造法是制备磁控溅射靶材的基本方法之一,常用的熔炼方法有真空感应熔炼、 真空电弧熔炼和真空电子轰击熔炼等。高纯金属如 Al、Ti、Ni、Cu、Co、Ta、Ag、 Pt 等具有良好的塑性,直接在原有铸锭基础上进一步熔铸后,进行锻造、轧制和热 处理等热机械化处理技术进行微观组织控制和坯料成型。与粉末冶金法相比,熔融铸造法生产的靶材产品杂质含量低,致密度高,但材料内 部存在一定孔隙率,需后续热加工和热处理工艺降低其孔隙率。粉末冶金法 粉末冶金法是目前溅射靶材的主要制备方法,具有容易获得均匀细晶结构、节约原 材料、生产效率高等优点。通常,熔融铸造法无法实现难熔金属溅射靶材的制备。 对于熔点和密度相差较大的两种或两种以上的金属,采用普通的熔融铸造法,一般 也难以获得成分均匀的合金靶材。对于无机非金属靶材、复合靶材,熔融铸造法更 是无能为力,而粉末冶金法是解决制备上述靶材技术难题的最佳途径。粉末冶金法制备靶材时,其关键在于:一是选择高纯、超细粉末作为原料;二是选 择能实现快速致密化的成形烧结技术,以保证靶材的低孔隙,并控制晶粒度;三是 制备过程严格控制杂质元素的引入。3.6.3 靶材技术发展趋势 提高溅射靶材利用率 由于溅射离子不规则的作用关系,溅射靶材在溅射过程中容易产生不均匀的冲蚀现 象,从而造成溅射靶材的利用率普遍较低。近年来,通过改善溅射机台以及加强产 品研发,使得溅射靶材的利用率有所提高,但仍然有很大的提升空间。如何溅射靶 材利用率是今后靶材研究的一个重要方向。精确控制溅射靶材晶粒晶向 当溅射靶材受到高速度能的离子束流轰击时,由于溅射靶材内部空隙内存在的气体 突然释放,造成大尺寸的溅射靶材微粒飞溅,这些微粒的出现会降低溅射薄膜的品 质甚至导致产品报废,例如在极大规模集成电路制作工艺过程中,每 150mm 直径 硅片所能允许的微粒数必须小于 30 个。怎样控制溅射靶材的晶粒,解决溅射过程 中的微粒飞溅现象成为溅射靶材的研发方向之一。在溅射过程中,溅射靶材中的原子容易沿着特定的方向溅射出来,而溅射靶材的晶 向能够对溅射速率和溅射薄膜的均匀性产生影响,最终决定产品的品质,因此,获 得一定晶向的靶材结构至关重要。但要使溅射靶材内部获得一定晶向,存在较大的 难度,需要根据溅射靶材的组织结构特点,采用不同的成型方法,进行反复的塑性 变形、热处理工艺加以控制。溅射靶材向大尺寸、高纯度化发展 溅射靶材的技术发展趋势与下游应用领域的技术革新息息相关,随着应用市场在薄 膜产品或元件上的技术进步,溅射靶材也需要随之变化。在下游应用领域中,半导 体产业对溅射靶材和溅射薄膜的品质要求最高,随着更大尺寸的硅晶圆片制造出来, 相应地要求溅射靶材也朝着大尺寸方向发展,同时也对溅射靶材的晶粒晶向控制提 出了更高的要求。溅射薄膜的纯度与溅射靶材的纯度密切相关,为了满足半导体更 高精度、更细小微米工艺的需求,所需要的溅射靶材纯度不断攀升,甚至达到 99.9999%(6N)纯度以上。3.6.4 靶材市场情况 根据中国电子材料行业协会的统计, 2016 年全球溅射靶材市场规模 113.6 亿美元, 其中平板显示领域市场规模 38.1 亿美元,占比 33.54%,半导体领域市场规模 11.9 亿,太阳能领域规模 23.4 亿美元。在溅射靶材领域,美国、日本企业占据全球市场主要份额。溅射靶材是典型的高技 术壁垒行业,由于靶材起源发展于国外,高端产品被以美日为代表的国外企业所垄 断。日矿金属、霍尼韦尔、东曹、普莱克斯、住友化学、爱发科等占据全球靶材市 场主要份额。从国内情况来看,2015 年国内高纯溅射靶材市场规模 153.5 亿元,其中平板显示 领域市场规模达69.3亿元,占比45.15%。近几年随着国内半导体产业的迅速发展, 国内晶圆厂迎来投建高峰,半导体材料领域市场规模将得到快速增长。国内溅射靶材行业虽然起步晚,但在国家政策和资金的支持下,目前已有个别龙头 企业在某些细分领域突破国外垄断,依靠价格优势在国内靶材市场占有一定份额。 国内溅射靶材企业主要有江丰电子、阿石创、有研新材等。其中,江丰电子的超高 纯金属溅射靶材产品已应用于世界著名半导体厂商的先端制造工艺,在 7 纳米技术 节点实现批量供货。3.7 CMP 抛光材料 化学机械抛光(CMP,Chemical Mechanical Polishing)是集成电路制造过程中实 现晶圆表面平坦化的关键工艺。CMP 技术是使用效果最好,应用最广泛的平坦化 技术,同时也是目前实现全局平坦化的唯一技术。CMP 工艺是机械抛光和化学抛光相结合的技术。单纯的机械抛光表面一致性好, 平整度高,但表面容易出现损失;化学抛光速率快,表面光洁度高,损失低,但表 面平整度差。CMP 工艺则两种抛光的完美结合,既可获得较为完美的表面,又可 得到较高的抛光速率,得到的平整度比其他方法高两个数量级。CMP 工艺通过表面化学作用和机械研磨技术相结合实现晶圆表面的平坦化,其工 作原理是通过各类化学试剂的化学作用,结合纳米磨料的机械研磨作用,在一定压 力下被抛光的晶圆对抛光垫做相对运动,从而使得被抛光的晶圆表面达到高度平坦 化、低表面粗糙度和低缺陷的要求。CMP 工艺过程用到的材料有抛光液、抛光垫、调节器等,其中抛光液和抛光垫是 最核心的材料,占比分别为 49%和 33%。3.7.1 抛光液 抛光液的主要成分包含研磨颗粒、各种添加剂和水,其中研磨颗粒主要为硅溶胶和 气相二氧化硅。抛光液原料中添加剂的种类可根据实际需求进行配比,如金属抛光 液中有金属络合剂、腐蚀抑制剂等,非金属抛光液中有各种调节去除速率和选择比 的添加剂。抛光液的核心技术是添加剂配方,这直接决定了最终的抛光效果。根据抛光的对象 不同,可以调整抛光液的配方,从而达到更好的抛光效果。目前,抛光液的配方是 各个公司的核心技术,也是抛光液的技术壁垒所在。3.7.2 抛光垫 抛光垫粘附在转盘的上表面,它是在 CMP 中决定抛光速率和平坦化能力的一个重 要部件。为了能控制磨料,抛光垫通常用聚亚胺脂做成,因为聚亚胺脂有像海绵一 样的机械特性和多孔吸水特性。抛光垫中的小孔能帮助传输磨料和提高抛光均匀性。抛光垫表面会变得平坦和光滑,达到一种光滑表面的状态,这种光滑表面的抛光垫 不能保存抛光磨料,会显著降低抛光速率。因此抛光垫要求进行定期修整来降低光 滑表面的影响。修整的目的是要在抛光垫的寿命期间获得一致的抛光性能。CMP 技术中,在抛光垫的寿命期间,控制抛光垫的性质以保证重复的抛光速率是 一项最大的挑战。抛光速率是在平坦化过程中材料被去除的速度,单位通常是纳米 每分钟。抛光垫的技术壁垒主要是沟槽的设计及提高使用寿命。沟槽使得抛光过程中的碎屑 更容易流走,从而得到更为平整的硅片表面。抛光垫由于是消耗品,所以提高使用 寿命能降低工艺成本。3.7.3 CMP 抛光材料市场情况根据 Cabot Microelectronics 官网公开披露的资料,2016 年、2017 年和 2018 年全 球化学机械抛光液市场规模分别为 11.0 亿美元、12 亿美元和 12.7 亿美元,预计2017-2020 年全球 CMP 抛光液材料市场规模年复合增长率为 6%。抛光垫方面, 2016-2018 年全球化学机械抛光垫市场规模分别为 6.5 亿美元、7 亿美元和 7.4 亿 美元。全球化学机械抛光液市场主要被美国和日本企业垄断,主要企业包括美国的 Cabot Microelectronics、Versum 和日本的 Fujifilm 等。其中,2017 年,Cabot Microelectronics 是全球抛光液市场的龙头企业,市占率最高,但已经从 2000 年的 约 80%下降至 2017 年的约 35%。国内方面,在高端半导体领域用抛光液领域,安 集科技是龙头企业。公司已完成铜及铜阻挡层等不同系列 CMP 抛光液产品的研发 及产业化,部分产品技术水平处于国际先进地位。在抛光垫方面,全球市场几乎被美国陶氏所垄断,陶氏占据了全球抛光垫市场约 79% 的市场份额。国外其他抛光垫生产商有美国的 Cabot Microelectronics、日本东丽、 台湾三方化学等。目前国内从事抛光垫材料生产研究的只有两家企业:鼎龙股份和 江丰电子。鼎龙股份目前是国内抛光垫研发和生产龙头企业,8 英寸抛光垫已经获 得国内晶圆代工厂订单,12 英寸抛光垫已经获得中芯国际的认证,2019 年上半年 也获得第一张 12 英寸抛光垫订单。江丰电子联合美国嘉柏微电子材料股份有限公 司,就抛光垫项目进行合作。4. 国内半导体材料龙头企业4.1 上海新昇半导体 上海新昇半导体科技有限公司是国内大硅片龙头生产商,成立于 2014 年 6 月,坐 落于临港重装备区内,占地 150 亩。新昇半导体第一期目标致力于在我国研究、开 发适用于 40-28nm 节点的 300mm 硅单晶生长、硅片加工、外延片制备、硅片分析 检测等硅片产业化成套量产工艺;建设 300 毫米半导体硅片的生产基地,实现 300 毫米半导体硅片的国产化,充分满足我国极大规模集成电路产业对硅衬底基础材料 的迫切要求。公司 2016 年 10 月成功拉出第一根 12 英寸单晶硅锭,2017 年打通 12 英寸硅片全 工艺流程,从 2017 年第二季度已经开始向中芯国际等芯片代工企业提供 40-28nm 工艺节点 12 英寸硅片样片进行认证,并有挡片、陪片、测试片等产品持续销售,正式出货并实现小批量销售。2018 年实现了 12 英寸硅片的规模化生产;一季度末,通过上海华力微电子有限公 司的认证并开始销售。2018 年底,上海新昇公司大硅片已通过中芯国际认证。2018 年实现收入超过 2 亿元。在第一期月产能 10 万硅片产能建设完成的同时,启动第 二个月产能 10 万硅片产能的建设。目前公司正在研发 20-14nm 工艺节点 12 英寸硅片,规划建设月产能达 5 万片 20-14nm 工艺节点 12 英寸硅片生产线。公司预计 2019 年实现月产能 20 万片,2020 年底实现月产能 30 万片,最终将形 成月产 60 万片 12 英寸硅片的产能。未来甚至可能高达月产 100 万片规模。4.2 中环股份中环股份致力于半导体节能产业和新能源产业,是一家集科研、生产、经营、创投 于一体的国有控股高新技术企业,拥有独特的半导体材料-节能型半导体器件和新能 源材料-高效光伏电站双产业链。公司主导产品电力电子器件用半导体区熔单晶硅 片综合实力全球第三,国外市场占有率超过 18%,国内市场占有率超过 80%;光 伏单晶研发水平全球领先,先后开发了具有自主知识产权的转换效率超过 24%的高 效 N 型 DW 硅片,转换效率达到 26%、“零衰减”的 CFZ-DW(直拉区熔)硅片。 单晶晶体晶片的综合实力、整体产销规模位列全球前列,高效 N 型硅片市场占有率 全球第一。江苏中环领先总部 总投资 30 亿美元的中环领先集成电路用大直径硅片项目,该项目主要产品为 8— 12 英寸抛光硅晶片,是制造集成电路的主要原材料。项目分两期实施,一期投资 15 亿美元,装备投入 60 亿元,于 2017 年 12 月底开工,建设三条 8 英寸生产线, 产能 75 万片/月;一条 12 英寸生产线,产能 15 万片/月。二期投资 15 亿美元,预 计将于 2020 年开工,建设两条 12 英寸生产线,产能 30 万片/月。项目全部投产后, 中环领先将实现 8 英寸大硅片进入世界前三、12 英寸大硅片进入世界前五的目标, 突破国外公司对大硅片的技术封锁和市场垄断。内蒙古中环领先半导体材料有限公司 主要生产 3/4/5/6 英寸的直拉硅单晶棒。目前,内蒙领先公司生产车间主要位于内 蒙古中环产业园区的一期和三期。三期车间含 45 台单晶炉设备,主要生产 3/4/5/6 英寸的直拉硅单晶棒,产能约在 30 吨/月;10 台单晶炉设备主要用于生产 8 英寸重 掺硅单晶棒,产能约在 10 吨/月。一期车间,是目前正在改造的千级区域净化,后 续主要是用于 8/12 英寸轻掺产品研发和生产,该区域包括 10 台 8 英寸单晶炉设备 和 4 台 12 英寸单晶炉设备。天津中环领先材料技术有限公司 中环领先的 8 英寸半导体区熔硅片实现量产,产能已陆续释放,进一步确立了公司 在区熔抛光片市场的地位。2018 年公司 8 英寸抛光片月产能已达到 30 万片,年产 量为 3.8 亿平方英寸;8 寸区熔单晶硅片主要是满足 IGBT 器件领域。12 英寸抛光片试验线实现月产能 2 万片,是中国大陆第一家、全球第三家做 12 英寸功率硅片 的工厂,目前有约 10 家客户在认证。公司 2019 年上半年实现营业收入 79.4 亿元,较上年同期增长 22.91%;归母净利 润 4.52 亿元,较上年同期增长 50.69%。在半导体产业领域,2019 年上半年公司 产品在国际一流客户销售占比同比提升 2 倍以上,为后续公司业务的持续增长打下 良好基础。我们预计公司 2020~2021 年的营业收入分别为 236.3 亿元、303.4 亿元,归属于上 市公司股东净利润分别为 16.8 亿元、23.16 亿元,每股收益分别为 0.59 元、0.82 元,对应 PE 分别为 31X、23X,给予“增持”评级。4.3 南大光电 江苏南大光电材料股份有限公司是一家专业从事高纯电子材料研发、生产和销售的 高新技术企业,公司于 2012 年 8 月 7 日在深圳证券交易所创业板挂牌上市。凭借 30 多年来的技术积累优势,公司先后攻克了国家 863 计划 MO 源全系列产品 产业化、国家“02—专项”高纯电子气体(砷烷、磷烷)研发与产业化、ALD/CVD 前驱体产业化等多个困扰我国数十年的项目,填补了多项国内空白。2017 年,南 大光电承担了集成电路芯片制造用关键核心材料之一的 193nm 光刻胶材料的研发 与产业化项目。通过承担国家重大技术攻关项目并实现产业化,南大光电形成了MO源、电子特气、 ALD/CVD 前驱体材料和光刻胶四大业务板块。凭借自身过硬的实力和良好的服务, 公司与国内外重要的集成电路、LED 优秀企业形成良好的合作关系。产品在 LED、 IC 领域客户中广受好评。2019 年 7 月 17 日,南大光电在互动平台透露,公司设立光刻胶事业部,并成立了 全资子公司“宁波南大光电材料有限公司”,全力推进“ArF 光刻胶开发和产业化项 目”落地实施。2020 年 3 月 6 日,南大光电在互动平台透露,宁波南大光电目前已安装完成第一 条 ArF(193nm)光刻胶生产线,该产线仍处于调试阶段。我们预计公司 2020~2021 年的营业收入分别为 4.45 亿元、6.45 亿元,归属于上市 公司股东净利润分别为 1.05 亿元、1.47 亿元,每股收益分别为 0.26 元、0.36 元, 对应 PE 分别为 106X、76X,给予“增持”评级。2016 年公司业绩下降主要有以下几个方面的原因: 由于 MO 源细分市场竞争激烈,公司主要产品销售价格同比去年下降约 36%,由 于销售价格下降引起营业利润下降; 报告期内,公司对存货计提了减值准备; 公司控股子公司全椒南大光电材料有限公司高纯磷烷、砷烷客户认证工作进展顺 利,已形成基本客户群,并已实现部分销售,但截至报告期末,营业利润亏损额 为 1,064 万元,报表合并后致使公司营业利润出现负数,净利润大幅下降。4.4 飞凯材料 上海飞凯光电材料股份有限公司致力于为高科技制造提供优质材料,并努力实现新 材料的自主可控。自 2002 年成立以来,飞凯材料始终专注于材料行业的创新与突 破。从光通信领域紫外固化材料的自主研发和生产开始,不断寻求行业间技术协同,将 核心业务范围逐步拓展至集成电路制造、屏幕显示和医药中间体领域,为客户提供 定制化、差异化的材料解决方案。飞凯材料将一如既往地通过优质的产品、高效的 服务和创新的模式实现更高的价值提升、盈利增长以及股东回报。2020 年 3 月 10 日,飞凯材料发布公告:公开发行可转债募集资金总额不超过人民 币 8.32 亿元,主要用于以下 5 个项目:(1)年产 10000 吨紫外固化光纤涂覆树脂 项目;(2)年产 2000 吨新型光引发剂项目;(3)年产 120 吨 TFT-LCD 混合液晶 显示材料项目;(4)年产 150 吨 TFT-LCD 合成液晶显示材料项目;(5)年产 500 公斤 OLED 显示材料项目。近年来,公司积极布局电子化学品领域,目前已打造成 为以光纤涂料、显示材料及半导体材料为主的新材料平台型公司我们预计公司 2020~2021 年的营业收入分别为 18.5 亿元、22 亿元,归属于上市公 司股东净利润分别为 3.54 亿元、4.29 亿元,每股收益分别为 0.68 元、0.83 元,对 应 PE 分别为 29X、24X,给予“买入”评级。4.5 强力新材 公司是一家以应用研究为导向,立足于产品自主研发创新的高新技术企业,专业从 事电子材料领域各类光刻胶专用电子化学品的研发、生产和销售及相关贸易业务。 公司主要产品为光刻胶专用化学品,分为光刻胶用光引发剂(包括光增感剂、光致 产酸剂等)和光刻胶树脂两大系列。公司的产品按照应用领域分类,主要有印制电路板(PCB)光刻胶专用化学品(光 引发剂和树脂)、液晶显示器(LCD)光刻胶光引发剂、半导体光刻胶光引发剂及 其他用途光引发剂四大类。光固化材料、光刻胶虽然都是由光引发剂(或光敏剂)、树脂、单体(或活性稀释 剂)三种主要化学品原料和其他助剂组成的,但光刻胶需要使用专用的化学品原料。 光刻胶是成像材料,和光固化材料相比,用途不同,使用的曝光光源和光能不同, 反应机理不完全相同,对于材料的溶解性、耐蚀刻性、感光性能、耐热性等要求不 同,各类光刻胶使用的光引发剂、树脂、单体等原料需要化学结构不同、性能各异 的专用化学品。而且光刻胶用于加工制作非常精细的图形线路,对原材料的纯度、 杂质、金属离子含量等有非常高的要求。我们预计公司 2020~2021 年的营业收入分别为 11.2 亿元、14.2 亿元,归属于上市 公司股东净利润分别为 1.95 亿元、2.23 亿元,每股收益分别为 0.72 元、0.82 元, 对应 PE 分别为 44X、38X。给予“增持”评级。4.6 容大感光 经过多年的发展,公司已逐步形成了 PCB 感光油墨、光刻胶及配套化学品、特种 油墨三大系列多种规格的电子化学产品。公司 PCB 油墨产品以感光油墨为主,主要应用于 PCB 领域,按用途不同又可分为 PCB 感光线路油墨、PCB 感光阻焊油墨和其他油墨等。公司的 PCB 感光线路油墨 具备以下特点:感光速度快、解像度高、附着力好、抗电镀、抗蚀刻性好、容易褪 膜等特点;公司的 PCB 感光阻焊油墨除具备常规性能外,还有工艺使用宽容度大、 耐热冲击性好、批次稳定性高等特点。公司的光刻胶产品主要包括紫外线正胶、紫外线负胶两大类产品以及稀释剂、显影 液、剥离液等配套化学品,主要应用于平板显示、发光二极管及集成电路等领域。公司的特种油墨产品主要用于触摸屏、视窗玻璃、智能手机等产品的精密加工领域。公司经过多年的自主研发和实践积累,掌握了树脂合成、光敏剂合成、配方设计及 制造工艺控制等电子感光化学品核心技术。我们预计公司 2020~2021 年的营业收入分别为 6.08 亿元、7.3 亿元,归属于上市 公司股东净利润分别为 0.57 亿元、0.76 亿元,每股收益分别为 0.47 元、0.63 元, 对应 PE 分别为 63X、47X。给予“增持”评级。4.7 晶瑞股份 苏州晶瑞化学股份有限公司 2001 年 11 月注册成立,位于苏州市吴中经济开发区澄 湖东路,是一家生产销售微电子业用超纯化学材料和其他精细化工产品的上市企业。 2019 年 7 月 31 日,晶瑞股份发布公告称,公司已与安徽省精细化工产业有机合成 基地管理委员会(以下简称“安徽精细化工管理委员会”)签署了项目投资协议书, 拟在安徽省精细化工产业基地投资建设年产 5.4 万吨微电子材料及循环再利用项目, 项目计划总投资额约 2 亿元。其中一期投资额为 1 亿元,项目用地面积约为 58 亩。公司注重技术的积累和创新,开发了一批技术领先、具有全球竞争力的主导产品。 其中双氧水、氨水量产达到 G5 等级,这两个产品将与引进日本技术的超纯硫酸(G5 等级)构成超纯产品组合,有望整体解决我国半导体用量最大的超纯试剂国产化问题,以上三种超纯试剂产品约占半导体全部超纯试剂用量的七成。氟化铵、硝酸、 盐酸、氢氟酸达到 G3、G4 等级,这些超高纯度产品为半导体材料逐步实现进口替 代提供了有力的保证。公司光刻胶产品达到国际中高级水准,i 线光刻胶已向中芯国际、扬杰科技、福顺 微电子等客户供货,KrF(248nm 深紫外)光刻胶完成中试,产品分辨率达到了 0.25~0.13μm 的技术要求,建成了中试示范线。我们预计公司 2020~2021 年的营业收入分别为 9.91 亿元、12.2 亿元,归属于上市 公司股东净利润分别为 0.55 亿元、0.76 亿元,每股收益分别为 0.37 元、0.46 元, 对应 PE 分别为 103X、81X。给予“增持”评级。4.8 北京科华 北京科华微电子材料有限公司是一家中美合资企业,成立于 2004 年,是一家产品 覆盖 KrF(248nm)、I-line、G-line、紫外宽谱的光刻胶及配套试剂供应商与服务商, 也是集先进光刻胶产品研、产、销为一体的拥有自主知识产权的高新技术企业。科华微电子拥有中高档光刻胶生产基地:2005 年,建成百吨级环化橡胶系紫外负 性光刻胶和千吨级负性光刻胶配套试剂生产线;2009 年 5 月,建成高档 G/I 线正胶 生产线(500 吨/年)和正胶配套试剂生产线(1000 吨/年);2012 年 12 月,科华 微电子建成 248nm 光刻胶生产线。2019 年 5 月 24 日国家科技重大专项(02 专项)极紫外光刻胶项目顺利通过国家 验收。“极大规模集成电路制造装备与成套工艺”专项(02 专项)项目“极紫外光 刻胶材料与实验室检测技术研究”由中国科学院化学研究所、中国科学院理化技术 研究所、北京科华微电子材料有限公司联合承担。经过项目组全体成员的努力攻关, 完成了 EUV 光刻胶关键材料的设计、制备和合成工艺研究、配方组成和光刻胶制 备、实验室光刻胶性能的初步评价装备的研发,达到了任务书中规定的材料和装备 的考核指标。目前公司的 KrF(248nm)光刻胶目前已经通过中芯国际认证,ArF(193nm)光 刻胶正在积极研发中。公司成立了“宁波南大光电材料有限公司”,全力推进“ArF 光刻胶开发和产业化项目”的落地实施。近期沃衍资本携手江苏盛世投资、紫荆资本、深圳市投控通产新材料创业投资企业、 四川润资、北京高盟新材料等投资机构完成了对国内光刻胶领头企业—北京科华微 电子材料有限公司 1.7 亿元的投资。4.9 清溢光电 深圳清溢光电股份有限公司创立于 1997 年 8 月,位于有“南中国的硅谷”之称的 深圳市高新技术产业园区,由清溢精密光电(深圳)有限公司整体改制而来,注册 资本为 2 亿元人民币,主要从事掩膜版的研发、设计、生产和销售业务,是国内成 立最早、规模最大的掩膜版生产企业之一。公司主要从事掩膜版的研发、设计、生产和销售业务,是国内成立最早、规模最大 的掩膜版生产企业之一。公司产品主要应用于平板显示、半导体芯片、触控、电路 板等行业,是下游行业产品制程中的关键工具。凭借优质的产品及服务,公司与下游众多知名企业建立了良好的合作关系。在平板 显示领域,公司拥有京东方、天马、华星光电、群创光电、瀚宇彩晶、龙腾光电、 信利、中电熊猫、维信诺等客户;在半导体芯片领域,公司已开发中芯国际、英特 尔、艾克尔、颀邦科技、长电科技、士兰微等客户。2008年,公司投产国内第一张5代TFT-LCD用掩膜版,配套我国下游5代TFT-LCD 产业的掩膜版国产化;2014 年至今,公司先后研发投产国内第一张 8.5 代 TFT-LCD 掩膜版、5.5 代 LTPS 用掩膜版,配套下游大尺寸高精度的掩膜版国产化。2017 年 6 月,公司成功投产高精度大尺寸平板显示掩膜版产线,开始具备生产高 精度大尺寸掩膜版产品的能力,并于 2018 年实现量产。2018 年下半年,公司开始 进行 5 代多栅产品技术的研发,并计划针对 HTM 掩膜版产品进行产业化开发,针 对 PSM 掩膜版产品进行技术开发。2019 年 1 月,清溢合肥项目的开工建设,标志着我区在持续发展显示产业的道路 上又迈出了关键一步。该项目总投资 10 亿元,占地面积 50 亩,产品定位在高端 AMOLED 及 LTPS 用掩膜版,满产后将年产高精度掩膜版 2000 张。我们预计公司 2020~2021 年的营业收入分别为 5.24 亿元、6.19 亿元,归属于上市 公司股东净利润分别为 0.82 亿元、0.93 亿元,每股收益分别为 0.31 元、0.35 元, 对应 PE 分别为 68X、60X。给予“增持”评级。4.10 路维光电 路维光电股份有限公司是高科技、高附加值、高技术密集型企业,总部位于深圳市 南山区科技园。公司自 1997 年成立至今一直致力于各类掩膜产品的专业生产,在 中国掩膜版行业拥有 20 年显著的技术及行业优势,集研发、生产、销售于一身, 是国内首家上市光刻掩膜版国家级高新技术企业。2019 年 6 月 27 日 11 时,路维光电产业园开园仪式隆重举行,路维光电股东方、 园区规划建设方代表以及成都路维全体员工到场,共同见证路维光电产业园开园。路维光电产业园占地面积 36000 多平方米,计划分两期建设 6 条高世代掩膜版生产 线,打造国内规模最大的光掩膜生产基地。产业园专注研发生产高世代、高精度 TFT-LCD 掩膜产品以及新型掩膜技术的研发,项目建成后将成为我国最大的掩膜 版制造基地。项目计划建设六条高世代掩膜版生产线,分两期建设。项目一期建设 1 条 11 代和 1 条 8.5 代光掩膜版生产线。4.11 华特股份 公司是一家致力于特种气体国产化,并率先打破极大规模集成电路、新型显示面板 等尖端领域气体材料进口制约的民族气体厂商,主营业务以特种气体的研发、生产 及销售为核心,辅以普通工业气体和相关气体设备与工程业务,提供气体一站式综 合应用解决方案。在持续研发之下,公司成为国内首家打破高纯六氟乙烷、高纯三氟甲烷、高纯八氟 丙烷、高纯二氧化碳、高纯一氧化碳、高纯一氧化氮、Ar/F/Ne 混合气、Kr/Ne 混 合气、Ar/Ne 混合气、Kr/F/Ne 混合气等产品进口制约的气体公司,并率先实现了 近 20 个产品的进口替代,是中国特种气体国产化的先行者。其中,高纯六氟乙烷 获选“第十届(2015)中国半导体创新产品和技术”、高纯三氟甲烷获选“第十一 届(2016)中国半导体创新产品和技术”,Ar/F/Ne、Kr/Ne、Ar/Ne 和 Kr/F/Ne 等 4 种混合气于 2017 年通过全球最大的光刻机供应商 ASML 公司的产品认证。目前, 公司是我国唯一通过 ASML 公司认证的气体公司,亦是全球仅有的上述 4 个产品 全部通过其认证的四家气体公司之一。 随着公司产品的纯度、精度和稳定度持续提高以及市场开拓的深入,产品获得了下 游相关产业一线知名客户的广泛认可,并实现了对国内 8 寸以上集成电路制造厂商 超过 80%的客户覆盖率,解决了中芯国际、华虹宏力、长江存储、武汉新芯、华润 微电子、台积电(中国)、和舰科技、士兰微电子、柔宇科技、京东方等客户多种 气体材料制约,并进入了英特尔(Intel)、美光科技(Micron)、德州仪器(TI)、 海力士(Hynix)等全球领先的半导体企业供应链体系。我们预计公司 2020~2021 年的营业收入分别为 10.81 亿元、12.96 亿元,归属于上 市公司股东净利润分别为 1.19 亿元、1.49 亿元,每股收益分别为 0.99 元、1.23 元,对应 PE 分别为 62X、50X。给予“买入”评级。4.12 雅克科技 成立于 1997 年 10 月,于 2010 年 5 月上市。主要致力于电子半导体材料,深冷复 合材料以及塑料助剂材料研发和生产。公司通过多种方式参与到集成电路(晶圆制 造及封装)、平板显示(包含 LCD 及 OLED)等电子制造产业链各个环节。2017 年公司收购成都科美特特种气体有限公司 90%股权、江苏先科半导体新材料 有限公司 84.825%股权。交易后,公司分别持有标的公司 90%、100%股权,并通 过江苏先科间接持有 UP Chemical 100%股权,切入半导体特气行业。公司借此切 入半导体特气和前驱体领域,丰富电子材料产品线。科美特专注于含氟类特种气体的研发、生产、提纯与销售,目前主要产品为六氟化 硫和四氟化碳,主要客户包括西电集团、平高集团、山东泰开等。UP Chemical 属于半导体材料供应商,主要从事生产、销售高度专业化、高附加值 的前驱体产品,其提供的材料主要应用在半导体集成电路存储、逻辑芯片的制造环 节,该公司的主要客户包括韩国 SK 海力士、三星电子等。2020 年 2 月 26 日,雅公司发布公告,子公司斯洋国际有限公司与 LG CHEM, LTD. 签署《业务转让协议》,以 580 亿韩元(折合人民币约 3.35 亿元)购买其下属的彩 色光刻胶事业部的部分经营性资产。LG 彩色光刻胶事业部主要生产显示用光刻胶, 客户主要为 LG 化学。 我们预计公司 2020~2021 年的营业收入分别为 24.73 亿元、30 亿元,归属于上市 公司股东净利润分别为 3.51 亿元、4.37 亿元,每股收益分别为 0.76 元、0.94 元, 对应 PE 分别为 48X、39X。给予“增持”评级。4.13 中船重工 718 所 中国船舶重工集团公司第七一八研究所创立于 1966 年,总部位于河北省邯郸市, 分部位于天津市北辰区。718 所于 2000 年组建特种气体工程部,自筹经费立项开 展研究,于 2009 年成功开发出高纯三氟化氮。该产品被列入国家“重点新产品” 及“火炬计划”,应用于国内大部分的半导体、液晶、太阳能行业,并出口美国、 日本、法国、德国等国家。该所已建成国内最大的三氟化氮、六氟化钨及三氟甲磺酸系列产品研发生产基地。 其中三氟化氮国内市场覆盖率超过 95%,国际市场覆盖率达 30%;六氟化钨国内 市场覆盖率达 100%,国际市场覆盖率达 40%。作为国家“02 专项”气体组项目 的牵头单位,该所已经成功研制出四氟化硅等 9 种高纯气体及 10 种混合气体,并 成功进行了产业化,产品得到了中芯国际等半导体龙头企业的测试认证。2018 年 5 月,中船重工 718 所举行二期项目开工仪式,2020 年全部达产后,将年 产高纯电子气体 2 万吨,三氟化氮、六氟化钨、六氟丁二烯和三氟甲基磺酸 4 个产 品产能将居世界第一。4.14 江化微 江阴江化微电子材料股份有限公司,是无锡科技领军企业、国家高新技术企业,专 业生产适用于半导体(TR、IC)、晶体硅太阳能(solar PV)、FPD 平板显示(TFT-LCD、 CF、TP、OLED、PDP 等)以及 LED、硅片、锂电池、光磁等工艺制造过程中的 专用湿电子化学品——超净高纯试剂、光刻胶配套试剂的专业制造商,是目前国内 生产规模大、品种齐全、配套完善的湿电子化学品专业服务提供商。公司年产 8 万吨的超高纯湿电子化学品生产基地已达到国际规模水平,主要生产设 备和测试仪器全部从国外引进,产品质量达到国际同类先进水平。江阴本部产能 4.5 万吨/年,一期技改扩产 1 万吨/年,新建二期 3.5 万吨/年,预计 2019 年下半年完成技改和投产;在镇江投资 22.8 万吨/年的 G4/G5 级湿电子化学 品产能,主打半导体市场,预计一期 5.8 万吨在 2019 年底投产;在成都规划 5 万 吨/年产能,主打平板显示市场,预计 2019 年年底投产,新增产能有望给公司业绩 带来较大提升。我们预计公司 2020~2021 年的营业收入分别为 6.32 亿元、8.14 亿元,归属于上市 公司股东净利润分别为 0.69 亿元、0.93 亿元,每股收益分别为 0.63 元、0.86 元, 对应 PE 分别为 69X、51X。给予“增持”评级。4.15 江丰电子 宁波江丰电子材料股份有限公司创建于 2005 年,是专业从事超高纯金属溅射靶材 研发、生产和销售的高新技术企业,先后承担了多项重大科研及产业化项目。江丰 电子坚持以科技为创新动力,十分注重自主研发与创新,拥有完整的自主知识产权。 截止 2018 年 6 月 30 日,公司及子公司共取得国内专利 218 项,包括发明专利 172 项,实用新型 46 项。公司的超高纯金属溅射靶材产品已应用于世界著名半导体厂 商的先端制造工艺,在 7 纳米技术节点实现批量供货。2019 年 8 月公司拟收购共创联盈持有的 Silverac Stella 100%股权,同时拟采取询 价的方式向不超过 5 名符合条件的特定投资者非公开发行股份募集配套资金。通过 本次交易,公司在原有的产品基础上丰富了靶材产品类型,优化了产品结构,完善 了业务布局。我们预计公司 2020~2021 年的营业收入分别为 9.77 亿元、12.23 亿元,归属于上 市公司股东净利润分别为 0.65 亿元、0.85 亿元,每股收益分别为 0.29 元、0.39 元,对应 PE 分别为 211X、163X。给予“增持”评级。4.16 安集科技 2006 年 2 月成立,公司是一家集研发、生产、销售、服务为一体的自主创新型高 科技微电子材料企业,主营业务为关键半导体材料的研发和产业化。公司产品包括 不同系列的化学机械抛光液和光刻胶去除剂,主要应用于集成电路制造和先进封装 领域。2019 年 7 月,安集科技在科创板上市,打破化学抛光液领域的国外垄断, 使中国在该领域有自主供应能力。公司是国内 CMP 抛光液及光刻胶去除剂龙头企业。公司成功打破了国外厂商对集 成电路领域化学机械抛光液的垄断,实现了进口替代,使得中国在该领域拥有了自 主供应能力。凭借多年的技术和经验积累、品牌建设,以及扎实的研发实力和成本、 管理、服务等方面的优势,公司在半导体材料领域取得一定的市场份额和品牌知名 度。公司化学机械抛光液已在 130-28nm 技术节点实现规模化销售,主要应用于国内外 8 英寸和 12 英寸主流晶圆产线;14nm 技术节点产品已进入客户认证阶段,10-7nm 技术节点产品正在研发中。公司产品已在中芯国际、长江存储、台积电等国际一线 代工厂得到应用。我们预计公司 2020~2021 年的营业收入分别为 3.68 亿元、5.42 亿元,归属于上市 公司股东净利润分别为 0.73 亿元、1.22 亿元,每股收益分别为 1.84 元、3.06 元, 对应 PE 分别为 86X、51X。给予“买入”评级。4.17 鼎龙股份 成立于 2000 年,公司是一家从事集成电路芯片及制程工艺材料、光电显示材料、 打印复印耗材等研发、生产及服务的国家高新技术企业、国家创新型企业、创业板 上市公司。公司一直秉承“实业为虎、资本为翼”的发展理念,依托科技创新和产 业整合,已形成打印复印耗材全产业链、集成电路芯片及制程工艺材料、光电显示 材料等三大板块的产业布局。公司在国际高端细分领域相继开发出彩色聚合碳粉、集成电路 CMP 用抛光垫及后 清洗液、柔性 OLED 用聚酰亚胺及发光材料、通用耗材芯片、通用硒鼓、磁性载体、 电荷调节剂、充电辊、显影辊、高端颜料、萘环酮类染料等十一类高新技术产品。目前公司在抛光垫领域已取得众多突破:8 英寸抛光垫已经获得国内一线晶圆大厂 华虹半导体和士兰微的认证通过并且取得订单,12 英寸抛光垫已经获得长江存储的 认证。2019 年上半年已经获得第一张 12 英寸抛光垫订单。柔性 OLED 用聚酰亚胺及发光材料方面,公司通过 5 年的研究和开发,已经成功实 现了柔性 OLED 基板材料—PI 浆料的试生产,并且产品已经通过深天马武汉 G6 代 产线的认证。目前,年产 1000 吨生产研发楼目前已经完成水电施工,目前正在进 行无尘车间的装修,以及自动化设备的调试及安装,预期在 2019 年年底达到量产 能力。根据公司 2019 年度业绩快报,公司实现营业总收入 117,319.18 万元,同比下降 12.29%;营业利润 1,722.52 万元,同比下降 94.67%;利润总额 4,494.38 万元, 同比下降86.09%;归属于上市公司股东的净利润3,868.39万元,同比下降86.80%。 业绩变动主要原因如下: 受宏观经济形势及行业政策变化的影响,硒鼓终端市场竞争加剧,市场价格下降, 公司对硒鼓业务计提了部分商誉减值准备; 公司武汉本部工厂环保停产整改期间,在新增环保设施投入及开支的同时,停止 CCA 项目在武汉本部工厂的生产,彩色碳粉等产品的部分型号因备货不足亦影 响到下半年度的产品市场供给及销售; 公司继续加大了对 CMP 抛光垫、PI 浆料等新项目的研发费用开支,相关业务也 随着公司的持续投入及全力推动逐步取得成效。我们预计公司 2020~2021 年的营业收入分别为 17.72 亿元、22.25 亿元,归属于上 市公司股东净利润分别为 3.42 亿元、4.38 亿元,每股收益分别为 0.38 元、0.45 元,对应 PE 分别为 31X、25X。给予“增持”评级。……(报告来源:申港证券)如需报告原文档请登录【未来智库】。