欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
人工智能研究方法,3+1>4冷天气

人工智能研究方法,3+1>4

长期以来,由于研究者的专业和研究领域的不同以及他们对智能本质的理解有异,因而形成了不同的人工智能学派,各自采用不同的研究方法。与符号主义、联结主义和行为主义相应的人工智能研究方法为功能模拟法、结构模拟法和行为模拟法。此外,还有综合这3种模拟方法的集成模拟法。功能1.功能模拟法符号主义学派也可称为功能模拟学派。他们认为:智能活动的理论基础是物理符号系统,认知的基元是符号,认知过程是符号模式的操作处理过程。功能模拟法是人工智能最早和应用最广泛的研究方法。功能模拟法以符号处理为核心对人脑功能进行模拟。本方法根据人脑的心理模型,把问题或知识表示为某种逻辑结构,运用符号演算,实现表示、推理和学习等功能,从宏观上模拟人脑思维,实现人工智能功能。功能模拟法已取得许多重要的研究成果,如定理证明、自动推理、专家系统、自动程序设计和机器博弈等。功能模拟法一般采用显示知识库和推理机来处理问题,因而它能够模拟人脑的逻辑思维,便于实现人脑的高级认知功能。功能模拟法虽能模拟人脑的高级智能,但也存在不足之处。在用符号表示知识的念时,其有效性很大程度上取决于符号表示的正确性和准确性。当把这些知识概念转换成推理机构能够处理的符号时,将可能丢失一些重要信息。此外,功能模拟难于对含有噪声的信息、不确定性信息和不完全性信息进行处理。这些情况表明,单一使用符号主义的功能模拟法是不可能解决人工智能的所有问题的。结构2.结构模拟法联结主义学派也可称为结构模拟学派。他们认为:思维的基元不是符号而是神经元,认知过程也不是符号处理过程。他们提出对人脑从结构上进行模拟,即根据人脑的生理结构和工作机理来模拟人脑的智能,属于非符号处理范畴。由于大脑的生理结构和工作机理还远未搞清,因而现在只能对人脑的局部进行模拟或进行近似模拟。人脑是由极其大量的神经细胞构成的神经网络。结构模拟法通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。与功能模拟法不同,结构模拟法是基于人脑的生理模型,通过数值计算从微观上模拟人脑,实现人工智能。本方法通过对神经网络的训练进行学习,获得知识并用于解决问题。结构模拟法已在模式识别和图像信息压缩领域获得成功应用。结构模拟法也有缺点,它不适合模拟人的逻辑思维过程,而且受大规模人工神经网络制造的制约,尚不能满足人脑完全模拟的要求。行为3.行为模拟法行为主义学派也可称为行为模拟学派。他们认为:智能不取决于符号和神经元,而取决于感知和行动,提出智能行为的“感知——动作”模式。结构模拟法认为智能不需要知识、不需要表示、不需推理;人工智能可能可以像人类智能一样逐步进化;智能行为只能在现实世界中与周围环境交互作用而表现出来。智能行为的“感知——动作”模式并不是一种新思想,它是模拟自动控制过程的有效方法,如自适应、自寻优、自学习、自组织等。现在,把这个方法用于模拟智能行为。行为主义的祖先应该是维纳和他的控制论,而布鲁克斯的六足行走机器虫只不过是一件行为模拟法(即控制进化方法)研究人工智能的代表作,为人工智能研究开辟了一条新的途径。尽管行为主义受到广泛关注,但布鲁克师的机器虫模拟的只是低层智能行为,并不能导致高级智能控制行为,也不可能使智能机器从昆虫智能进化到人类智能。不过,行为主义学派的兴起表明了控制论和系统工程的思想将会进一步影响人工智能的研究和发展。集成4.集成模拟法上述3种人工智能的研究方法各有长短,既有擅长的处理能力,又有一定的局限性。仔细学习和研究各个学派思想和研究方法之后,不难发现,各种模拟方法可以取长补短,实现优势互补。过去在激烈争论时期,那种企图完全否定对方而以一家的主义和方法主宰人工智能世界的氛围,正被互相学习、优势互补、集成模拟、合作共赢、和谐发展的新氛围所代替。采用集成模拟方法研究人工智能,一方面各学派密切合作,取长补短,可把一种方法无法解决的问题转化为另一方法能够解决的问题;另一方面,逐步建立统一的人工智能理论体系和方法论,在一个统一系统中集成了逻辑思维、形象思维和进化思想,创造人工智能更先进的研究方法。要完成这个任务,任重而道远。

归则下之

人工智能研究的五个领域

人工智能的应用领域非常广,人工智能作为一种计算机科学的一个分支,从事人工智能研究的人还很少。资力企服通过近期AI相关类型企业资质办理逐渐上升的特点了解到,国家对人工智能专业人才的渴求度很大,应用领域也分布的广,人工智能主要分为自然语言处理、计算机视觉、语音识别、专家系统以及交叉领域等五个领域。第一方面:自然语言处理自然语言处理是一门融语言学、计算机科学、数学于一体的科学。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统,是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。自然语言处理的目的是实现人与计算机之间用自然语言进行有效通信的各种理论和方法。第二方面:语音识别语音识别是一门交叉学科。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情,如今人工智能将这一理想变为现实,并带它走入了我们日常的生活。第三个方面:计算机视觉计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。通过计算机视觉,电脑将处理更适合人眼观察或传送给仪器检测的图像。计算机视觉的主要任务是通过对采集的图片或者视频进行处理以获得相应场景的三维信息。第四个方面:专家系统专家系统是人工智能中最重要的也是最活跃的一个应用领域,它是指内部含有大量的某个领域专家水平的知识与经验,利用人类专家的知识和解决问题的方法来处理该领域问题的智能计算机程序系统。通常是根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,去解决那些需要人类专家处理的复杂问题。第五个方面:各领域交叉使用其实人工智能的四大方面应用其实或多或少都涉及到了其他领域,然而交叉应用最突出的方面还是智能机器人。机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。人工智能是一个涵盖所有机器智能的术语。资力企服分析近期办理AI相关资质的企业情况发现,人工智能研究和应用的不同领域有时会重叠,人工智能正带来创造更智能、更强大机器的大胆机遇。未来几年,人工智能必将进一步改变商业和生活。

凤还巢

人工智能系列(三) 人工智能主要研究哪些内容

原力君在系列的前两篇中提出了人工智能三部曲(拟人、类人、超越人),并简要介绍了现有资料中普遍认同的人工智能研究的目标(理解人类的知识、有效的自动化、有效的智能扩展、超人的智力、通用问题求解、连惯性的交谈、自治、学习、信息储存与处理)。理想是丰满的,现实是骨感的,已有的人工智能研究离实现这些目标还有很长的路要走。但是,人类从没有停止探索的脚步。人工智能技术研究者们在实现目标的路上各自走出了不同的道路,开辟了不同的研究领域。他们或者模拟人类智能的基本功能(功能模拟法)、或者模拟人类智能的物质结构(结构模拟法)、或者模拟人类的行为方式(行为模拟法)、或者集合功能结构和行为于一身(集成模拟法),来研究和模拟人的智能。不管使用何种方法研究人工智能,都不会脱离开两个方面:智能的理论基础、人工智能的实现。所以,一种广受研究者认可的关于人工智能研究所需要涉及的基本内容总结为九个方面(参考资料蔡自兴老师的《人工智能及其应用》):认知建模、知识表示、知识推理、知识应用、机器感知、机器思维、机器学习、机器行为、智能系统构建。认知建模、知识表示、知识推理是对人类智能模式的一种抽象。认知建模主要研究人类的思维方式、信息处理的过程、心理过程,以及人类的知觉、记忆、思考、学习、想象、概念、语言等相关的活动模式。知识表示,则是将人类已经掌握的知识概念化、形式化、模型化,这个的重要性在于,人类要想建立超越人的人工智能系统,就要把整个人类种群所掌握的知识灌输给它,从而让它在一定程度上可以在知识量方面超越任何一个人类个体。知识推理,则是研究人类如何利用已有的知识去推导出新的知识或结论的过程,从而可以让机器也可以具备像人一样的推理能力。机器感知、机器思维、机器学习、机器行为则是对人类智能的一种模拟实现。机器感知研究的是如何使机器具有类似于人类的感觉,包括视觉、听觉、触觉、嗅觉、痛觉等等,这个要用到认知建模里面的知觉理论,而且需要能够提供相应知觉所需信息的传感器。举个例子,机器视觉具有视觉理论基础,同时还需要摄像头等传感器提供机器视觉所需要的图像数据。机器思维,则是利用机器感知的信息、认知模型、知识表示和推理来有目标的处理感知信息和智能系统内部的信息,从而针对特定场景给出合适的判断,制定事宜的策略。这个说起来抽象,实际上大家已经接触到的路径规划、预测、控制等都属于机器思维的范畴。机器思维,顾名思义就是在机器的脑子里进行的动态活动,也就是计算机软件里面能够动态的处理信息的算法。机器学习,是与人类的学习活动对标的。虽然有了知识并且也可以基于已有知识去推理,但是机器也要像人一样不断地学习新的知识从而更好地适应环境。机器学习研究的就是如何让机器在与人类、自然交互的过程中自发的学习新的知识,或者利用人类已有的文献数据资料进行知识学习。目前,人工智能研究和应用最广泛的内容就是机器学习,包括深度学习、强化学习等。机器行为是指智能系统具有的表达能力和行动能力,包括与人对话、与机器对话、描述场景、移动、操作机器和抓取物体等能力。而语音系统(音箱)、执行机构(电机、液压系统)等是机器行为的物质基础。智能系统要想具备行为能力,离不开机器感知和机器思维的结果。思维是行为的基础,所谓是知行合一。人工智能研究的最终要构建拟人、类人、超越人的智能系统拟人、类人、超越人是人工智能的三部曲,人类最终要用一种实用的方式将上述关于知识和机器的研究技术付诸实现。目前已有的人工智能系统的实现主要体现在机器人(仿人、仿生,如Atlas仿人机器人,Big Dog机器狗等)、无人系统(无人车、无人机、无人船)、人工大脑(IBM沃森、阿尔法狗)等.一句话总结:人工智能主要研究如何让机器像人一样能够感知、获取知识、储存知识、推理思考、学习、行动等能力,并最终创建拟人、类人、或超越人的智能系统。

论则不至

细数人工智能的4大研究成果

人工智能其实是可以拆分开来看的,分布是“人工”和“智能”,“人工”比较简单,也就是字面上的意思,这一点多数人都是认同的,而对于那些所谓的什么人力所能及制造的,或者是人类的智慧到底可不可以研究出人工智能等等问题都无法改变人工就是字面的意思这一观点。至于“智能”的问题就要多很多了,因为不只是涉及到诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。智能主要就是模仿人的智能,而模仿人的智能主要是因为人们只了解人的智能,这一观点普遍人士比较认同的。可是人类对于自己的智慧了解是非常有限的,更是无法研究出人的智慧是如何构成的,所以对于人工制造出来的“智能”就很难去定义了。也是因为这样人工智能的研究常会牵扯到人对于自身智能的研究。而人工智能随着时间不断增加,也是在不断的进化,直至如今,主要的研究成果有4个,它们分别是:人机对弈1996年2月10~17日, GARRY KASPAROV以4:2战胜“深蓝” (DEEP BLUE)。1997年5月3~11日, GARRY KASPAROV以2.5:3.5输于改进后的“深蓝”。2003年2月GARRY KASPAROV 3:3战平 “小深”(DEEP JUNIOR)。2003年11月GARRY KASPAROV 2:2战平 “X3D德国人” (X3D-FRITZ)。模式识别采用 $模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25)自动工程自动驾驶(OSO系统)印钞工厂(¥流水线)猎鹰系统(YOD绘图)知识工程以知识本身为处理对象,研究如何运用人工智能和软件技术,设计、构造和维护知识系统专家系统智能搜索引擎计算机视觉和图像处理机器翻译和自然语言理解数据挖掘和知识发现而这些研究成果经过不断的延伸,现在涉及的领域已经非常多了,比如医疗、机械、服务等等,而随着不断的探索这些领域,人们的生活可以说是发生了翻天覆地的变化,就比如说出行有了代步工具,娱乐有了游戏机等,游玩有了私家车等等。其实发展到如今,离不开那些从业人工智能研究行业的人们,而未来想要更好的研究成果,还是需要更多的人们投入到它的研究中。想要学习更深度的人工智能知识,请发私信,更多更深度的人工智能知识正等你免费领取。

杏奈

干货知识分享:人工智能的研究方法

人工智能的研究现在还没有出现统一的原理或者是规范的指导相关的研究,并且在大多数的问题上还具有争议,就比如是不是要从心理或神经方面模拟人工智能,或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的等等。在20世纪的50年代,数字计算机成功研发,研究者开始探索人类智能可不可以简化为符号处理。研究集中于那些比较有研究风格的学院,比如说卡内基梅隆大学, 斯坦福大学和麻省理工学院等,JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能)。而到了60年代,符号方法已经在小型证明程序上模拟高级思考取得了很大的成就。控制论或者是神经网络因其的方法而常作为次要。在60~70年代的研究者经过研究确认符号方法可以创造出好的人工智能机器,而这也是他们的目标。赫伯特·西蒙和艾伦·纽厄尔是一位认知模拟经济学家,他研究人对于问题解决的能力后曾想将其形式化,而这也为人工智能的基本原理打下了很好的基础,就比如认知科学, 运筹学和经营科学。在研究过程中经由心理学实验的结果开发模拟人类解决问题方法的程序,这种方法在卡内基梅隆大学沿袭了下来,并且该方法还在80年代的时候达到了高峰期。从逻辑方面来看的话不像艾伦·纽厄尔和赫伯特·西蒙,JOHN MCCARTHY觉得机器无需人的思想,而是侧重于抽象推理和解决问题的本质,不管人们用的是不是一样的算法。而他在斯坦福大学的实验室中主要是经由形式化逻辑来处理遇到的问题,就比如知识表示, 智能规划和机器学习等。热衷于逻辑方法研究的还有爱丁堡大学,从而让欧洲的其他地方出现编程语言以及逻辑编程科学的。斯坦福大学对于“反逻辑”的研究,从中发现想要让计算机视觉和自然语言处理完美解决是很难的,这必须要有针对性的方案,并且还主张没有简单和通用的原理可以做到具有智能的行为的,就比如逻辑原理。关于人工智能更多更有深度的资料,想要学习了解,可以私信询问,100门视频课件+课件源码,私信联系就可以免费领取。

声如乳虎

人工智能的研究方法,你都了解多少?

目前没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则来描述?还是必须解决大量完全无关的问题?控制论与大脑模拟20世纪40年代到50年代,许多研究者探索神经学、信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如格雷·华特的乌龟和约翰霍普金斯野兽。这些研究者还经常在普林斯顿大学和英国的Ratio Club举行技术协会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。符号处理当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学,斯坦福大学和麻省理工学院,而各自有独立的研究风格。约翰·豪格兰德称这些方法为GOFAI(出色的老式人工智能)。60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。60-70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学、运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于Soar发展到高峰。基于逻辑不像艾伦·纽厄尔和赫伯特·西蒙,约翰·麦卡锡认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言Prolog和逻辑编程科学。“反逻辑” 斯坦福大学的研究者发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案:他们主张不存在简单和通用原理能够达到所有的智能行为。罗杰·单克描述他们的“反逻辑”方法为“scruffy”。常识知识库就是“scruffy”AI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。“知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。计算智能1980年代中大卫·鲁姆哈特等再次提出神经网络和联结主义。这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。统计学方法1990年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是近期人工智能成功的原因。共用的数学语言也允许已有学科的合作。Stuart J. Russell和Peter Norvig指出这些进步不亚于“革命”和“neats的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。

李觏

研究人工智能的同学,请先读懂这9项基本内容

人工智能学科有着十分广泛和极其丰富的研究内容。不同的人工智能研究者从不同的角度对人工智能的研究内容进行分类。例如,基于脑功能模拟、基于不同认知观、基于应用领域和应用系统、基于系统结构和支撑环境等。因此,要对人工智能研究内容进行全面和系统的介绍也是比较困难的,而且可能也是没有必要的。下面综合介绍一些得到诸多学者认同并具有普遍意义的人工智能研究的基本内容。人工智能1.认知建模人类的认知过程是非常复杂的。作为研究人类感知和思维信息处理过程的一门学科,认知科学(或称思维科学)就是要说明人类在认知过程中是如何进行信息加工的。认知科学是人工智能的重要理论基础,涉及非常广泛的研究课题。除了浩斯顿(Houston)提出的知觉、记忆、思考、学习、语言、想象、创造、注意和问题求解等关联活动外,还会受到环境、社会和文化背景等方面的影响。人工智能不仅要研究逻辑思维,而且还要深入研究形象思维和灵感思维,使人工智能具有更坚实的理论基础,为智能系统的开发提供新思想和新途径。2.知识表示知识表示、知识推理和知识应用是传统人工智能的三大核心研究内容。其中,知识表示是基础,知识推理实现问题求解,而知识应用是目的。知识表示是把人类知识概念化、形式化或模型化。一般就是运用符号知识、算法和状态图等来描述待解决的问题。已提出的知识表示方法主要包括符号表示法和神经网络表示法两种。3.知识推理推理是人脑的基本功能。几乎所有的人工智能领域都离不开推理。要让机器实现人工智能,就必须赋予机器推理能力,进行机器推理。所谓推理就是从一些已知判断或前提推导出一个新的判断或结论的思维过程。形式逻辑中的推理分为演绎推理、归纳推理和类比推理等。知识推理,包括不确定性推理和非经典推理等,似乎已是人工智能的一个永恒研究课题,仍有很多尚未发现和解决的问题值得研究。4.知识应用人工智能能否获得广泛应用是衡量其生命力和检验其生存力的重要标志。20世纪70年代,正是专家系统的广泛应用,使人工智能走出低谷,获得快速发展。后来的机器学习和近年来的自然语言理解应用研究取得重大进展,又促进了人工智能的进一步发展。当然,应用领域的发展是离不开知识表示和知识推理等基础理论以及基本技术的进步的。5.机器感知机器感知就是使机器具有类似于人的感觉,包括视觉、听觉、力觉、触觉、嗅觉、痛觉、接近感和速度感等。其中,最重要的和应用最广的要算机器视觉(计算机视觉)和机器听觉。机器视觉要能够识别与理解文字、图像、场景以至人的身份等;机器听觉要能够识别与理解声音和语言等。机器感知是机器获取外部信息的基本途径。要使机器具有感知能力,就要为它安上各种传感器。机器视觉和机器听觉已催生了人工智能的两个研究领域——模式识别和自然语言理解或自然语言处理。实际上,随着这两个研究领域的进展,它们已逐步发展成为相对独立的学科。6.机器思维机器思维是对传感信息和机器内部的工作信息进行有目的的处理。要使机器实现思维,需要综合应用知识表示、知识推理、认知建模和机器感知等方面的研究成果,开展如下各方面的研究工作:(1)知识表示,特别是各种不确定性知识和不完全知识的表示。(2)知识组织、积累和管理技术。(3)知识推理,特别是各种不确定性推理、归纳推理、非经典推理等。(4)各种启发式搜索和控制策略。(5)人脑结构和神经网络的工作机制。智能学习7.机器学习机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统大多数没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。学习是人类具有的一种重要智能行为。机器学习就是使机器(计算机)具有学习新知识和新技术,并在实践中不断改进和完善的能力。机器学习能够使机器自动获取知识,向书本等文献资料和与人交谈或观察环境进行学习8.机器行为机器行为系指智能系统(计算机,机器人)具有的表达能力和行动能力,如对话、描写、刻画以及移动、行走、操作和抓取物体等。研究机器的拟人行为是人工智能的高难度任务。机器行为与机器思维密切相关,机器思维是机器行为的基础。9.智能系统构建上述直接的实现智能研究,离不开智能计算机系统或智能系统,离不开对新理论、新技术和新方法以及系统的硬件和软件支持。需要开展对模型、系统构造与分析技术、系统开发环境和构造工具以及人工智能程序设计语言的研究。一些能够简化演绎、机器人操作和认知模型的专用程序设计以及计算机的分布式系统、并行处理系统、多机协作系统和各种计算机网络等的发展,将直接有益于人工智能的开发。

泛而若辞

什么是人工智能研究的价值体现

人工智能自诞生以来,就受到众多领域的关注,而随着时间的发展,人们对于人工智能又有了新的理解。就比如说:繁重的科学还有工程的计算一直以来都是用人类的大脑来进行计算的,自从出现了计算机,那些计算的工作都交给了计算机,不但做得比人类更好还更准确,所以,现在人们已经不再认同这种计算只能是人类的智力才可完成的任务这一说法,由此可以发现,复杂的工作会根据时代的发展与技术的进步而发生变化,而人工智能这门科学的发展方向也自然会为了更适应时代而发生变化,而它在发展的同时,又会开启新的目标或者是新的研究领域。一般来说,“机器学习”的数学基础就是统计学、信息论还有控制论等,这种“机器学习”非常的依赖经验。计算机会在解决问题的同时学习知识以及策略,这样如果遇到相同的问题的话,就会经由经验知识来进行解决遇到的问题并且还会积累新的经验,这一点和人类是非常相似的,而这种学习的方法被人们叫做“连续型学习”,不过人类除了拥有学习的能力之外还有一种更强大的能力就是创造,而这就叫做“跳跃型学习”,在一些特殊的情况下也会叫做“灵感”或者是“顿悟”。人类的大脑智力现在还没有完全解读出来,所以经过模拟人类大脑的产品——计算机,自然没有“顿悟”的能力,或者更严格一些可以理解为,计算机在学习还有实践中很难做到“不依赖于量变的质变”,也就是说很难从一种“质”直接到另一种“质”,由一个“概念”直接到另一个“概念”。也是因为这样,它们的实践和人类的实践是有本质区别的,因为人类的实践中还包括经验还有创造,而经验和创造也成为了智能化研究人员最想得到的成果。在2013年,有数据研究人员开发了一种新的数据分析方法,这种方法引出了研究函数性质的新方法,并且还发现,这种新的方法给计算机学习创造带来一种新的途径。从本质上面来看,该方法是一种可以给人“创造力”的模式带来有效的途径,而这种途径需要经由数学来实现,并且还是一种一般人不能拥有而计算机可以拥有的途径,也是因此,计算机有了创造的能力。更多更深度的人工智能学习资料,100门视频课件+课件源码,私信联系就可以免费获取。

邻国相望

什么是人工智能?浅谈人工智能的研究目标是什么

智能人类在认识和改造世界的活动中,由脑力劳动表现出来的能力。包括感知、理解、抽象、分析、推理、判断、学习和对变化环境的适应等到那个。基于计算机的智能如果一种行为或一系列行为能完成人类所做到的事情,就说它是智能的。人工智能又称为智能模拟,用计算机模拟人脑的智能行为。包括感知、学习、推理、对策、决策、预测、直觉、联想。Nilson:AI是关于知识的科学,即怎样获取,表示和使用知识的科学。Feigenbaum:AI是知识信息处理系统。Winston:AI就是研究如果使计算机去做过去只有人才能做的富有智能的工作。人工智能只包含理论研究的内容又包含工程方面的内容。人工智能的研究注意只能系统的效果而不是单纯的对人的智能行为的模拟。(人工智能研究的出发点与生物学家不同。生物学家研究只能行为是从脑的结构和神经细胞的组织入手。人工智能研究者主要从只能行为的过程与表现入手,重点放在智能行为的实际效果上。)人工智能的研究目标根本目标:要求计算机不仅能模拟而且可以延伸,扩展人的只鞥呢,达到甚至超过人类智能的水平。近期目标,使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分职能行为。作为工程技术学科,人工智能的目标是提出建造人工智能系统的新技术、新方法和新理论,并在此基础上研制出具有智能行为的计算机系统。作为理论研究学科,人工智能的目标是提出能够描述和解释智能行为的概念与理论,为建立人工智能系统提供理论依据。

人犹效之

人工智能的历史、现状和未来

来源:求是2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。 新华社记者 李钢/摄2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。 新华社记者 金立旺/摄2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。 ISAAC LAWRENCE/视觉中国2018年11月22日, 在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。 麦田/视觉中国如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。概念与历程了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(Artificial Intelligence,简称AI)”这一概念,标志着人工智能学科的诞生。人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。现状与影响对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CB Insights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。趋势与展望经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。态势与思考当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司Compass Intelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。作者:谭铁牛 中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士