欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
纳米材料项目可行性研究报告-“十四五”化工行业重点支持发之

纳米材料项目可行性研究报告-“十四五”化工行业重点支持

纳米材料项目可行性研究报告-“十四五”化工行业重点支持1、概述纳米材料是指在三维空间中有至少一维属于纳米尺寸范围内(1~100纳米)的材料,或以该尺寸范围内的物质为基本构成单元的材料。近年来,随着纳米材料生产技术的改良及下游需求增加的拉动,纳米材料的市场规模呈现了较快的增长趋势。中国纳米材料行业市场规模由2014年的481.3亿元增长到了2018年的791.0 亿元,年复合增长率为13.2%。纳米材料未来有望在基础工业材料以及显示器零件的细分市场上有所突破,带动整体市场规模在2023年达到1,633.9亿元。1.1下游行业发展带来材料改善需求纳米材料凭借表面效应及高反应活性等优异性能获得市场认可现阶段主要以石墨烯导热膜在消费电子行业的应用为代表。散热问题是消费电子行业长期高度关注的技术问题,石墨烯导热膜即是充分利用这一特性而开发出的片状材料,与传统材料相比具有厚度薄及散热效率高的优势,满足了消费电子产品的散热需求。1.2现有应用渗透率提高,逐渐取代传统材料部分纳米材料凭借着高导电性、高导热性等性能优势,在现有应用领域持续渗透。碳纳米管导电浆料的市场占有率自 2014 年至 2018年逐年上升,由116%提高到29.8%。虽与炭黑类材料目前的市场地位仍有差距,但随着碳纳米管材料在动力锂电池领域的不断渗透,其市场份额有望在 2021年超过炭黑成为动力锂电池的主流导电剂,并在2023年进一步达到75%以上的占有率。1.3量子点显示器性价比优秀第一阶段的技术形态为量子点光转换膜,即在液晶屏幕的基础上使用量子点光转换膜代替传统的荧光粉膜,蓝色光源通过量子点光转换膜转换为白色光源经液晶过滤为红绿蓝三色,可达到提升色域、改善液晶屏幕的显示质量的目的;第二阶段的技术形态仍然使用蓝光作为背光光源,使量子点直接接受蓝光后并发出红绿蓝三色光;最终阶段的目标技术形态为QLED,即不需要额外光源的自发光技术。作为纳米材料中的重要细分市场,第二代量子点显示技术的实现带来的产值将对整个纳米材料行业的市场规模带来可观的拉动作用。2、中国纳米材料行业市场综述2.1 中国纳米材料行业定义及分类根据尺寸上的绝对数值进行定义,纳米材料是指在三维空间中有至少一维属于纳米尺寸范围内(1~100纳米)的材料,或以该尺寸范围内的物质为基本构成单元的材料。由于在纳米尺寸下,物质具有与宏观状态时所不同的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应等,因而纳米材料具有异于传统尺寸材料的光、电、磁、热、力学和机械等性能。将材料纳米化的目的主要是追求与传统尺寸材料不同的物理或化学性质,故芯片工业中的晶体管虽然在尺寸上符合纳米尺寸的标准,但通常不被划入纳米材料的范畴之中。根据材料三维尺寸中符合纳米尺寸范围的维数,可将纳米材料分为三类∶(1)三维尺寸均符合纳米尺寸标准的材料被称为零维纳米材料,常见形态为纳米颗粒,代表性材料包括铂纳米颗粒、金纳米颗粒等;(2)三维尺寸中有两个维度符合纳米尺寸标准的材料被称为一维纳米材料,常见形态为纳米管、纳米线或纳米纤维,代表材料包括碳纳米管、硅纳米线、碳纳米纤维等;(3)三维尺寸中有一个维度符合纳米尺寸标准的材料被称为二维纳米材料,常见形态为纳米薄膜,代表性材料包括石墨烯(一种晶格结构的二维碳纳米材料)、二硫化钼等。纳米材料分类2.2 中国纳米材料行业产业链中国纳米材料行业的产业链由上至下依次可分为上游纳米材料生产商、中游纳米材料应用零部件生产商以及下游终端产品提供商上游分析中国纳米材料行业产业链上游的主要参与者为纳米材料生产商,按所产纳米材料的主元素可划分为碳纳米材料生产商及其他纳米材料生产商。碳纳米材料由于在形态及应用方向等方面较为多元化,生产商通常会生产多类型的碳纳米材料。如厦门凯纳的主营产品中既包括了石墨烯粉体和石墨烯微片粉体,也包括石墨烯浆料;天奈科技的主营产品既包括碳纳米管导电浆料,又包括碳纳米管粉体;中国其他纳米材料生产商主要为纳米钛酸钡粉体的生产商,其中应用于生产MLCC的纳米钛酸钡的市场份额基本集中在国瓷材料,另一具备MLCC 配方粉生产能力的厂家为广东风华高新科技股份有限公司,但其生产的配方粉全部为自产自用,并不对外销售。数据显示,上游纳米材料生产商的成本结构较为稳定,前期在设备等固定成本方面的投入在总成本中的占比近60%,原料、人工等生产相关的浮动成本在总成本中的占比为30%左右。因此,上游厂商对中游纳米材料应用零部件生产商的议价能力较高。中游分析中国纳米材料行业产业链中游的主要参与者是纳米材料应用零部件生产商。以碳纳米管导电剂市场为例,其中游厂商的参与者主要为购买上游导电剂产品进行动力电池、数码电池等锂电池产品生产的电池厂商。这部分电池产品将作为生产零部件继续输送至下游的新能源汽车、智能手机、智能穿戴设备、无人机等制造厂商。当前纳米材料产业链中存在着"微笑曲线"特征,即从事附加价值较低的组装及制造业务的中游环节厂商,由于技术壁垒较低,同质化程度较高等原因受到上下游厂商挤压。一旦行业出现增长减缓或收缩情况,中间产品生产环节将受到冲击,因此其议价能力在产业链中处于最低位置。下游分析中国纳米材料行业产业链下游的主要参与者为终端应用型产品提供商,主要包括消费类电子产品、通信通讯及计算机等电子产品的提供商。与中间纳米材料应用零部件生产商不同,终端产品提供商可通过代工生产等形式降低组装及制造业务在主营业务中的比重,并向消费者提供其他服务型业务以进行终端品牌的塑造与营销,是"微笑曲线"理论中具有高附加价值的末端环节。在服务方面,以知名电子产品提供商小米集团(以下简称"小米")为例,除硬件销售外,小米公司还提供诸如广告、数字内容、电子商务以及互联网金融等互联网服务。根据小米2019年第一季度财务报告披露数据显示,小米服务类的营业收入在当季收入中的占比为近10%左右,贡献了43亿元的收入,且该类型业务的毛利率达到了67.4%,是主营业务中毛利率最高的板块;在品牌方面,与购买中间产品进行生产的制造商不同,终端消费者对品牌的敏感度处于更高的水平,终端产品提供商拥有的品牌往往能实现更高的溢价。由此可见,这一环节的议价话语权高于中游环节。3、中国纳米材料行业市场规模近年来,随着纳米材料生产技术的改良及下游需求增加的拉动,纳米材料的市场规模呈现了较快的增长趋势。中国纳米材料行业市场规模由2014年的481.3亿元增长到了2018年的791.0亿元,年复合增长率为13.2%(见图 2-5)。在生产技术的积累以及下游应用市场进一步推广的环境下,纳米材料未来有望在基础工业材料以及显示器零件的细分市场上有所突破,带动整体市场规模在2023年达到1633.9亿元。4、中国纳米材料行业市场趋势4.1 现有应用渗透率提高, 逐渐取代传统材料部分纳米材料凭借着高导电性、高导热性等性能优势,在现有应用领域持续渗透,并有望在未来5至10年挑战传统材料在应用上的市场地位。以碳纳米管材料为例,在已实现商业应用的动力锂电池用导电剂市场上,碳纳米管导电浆料的市场占有率自 2014年至2018 年逐年上升,由11.6%提高到29.8%(见中国动力锂电池导电剂市场占有率∶碳纳米管、炭黑)。在此期间,炭黑类材料的市场占有率逐年下降,由2014年的63.0%下降至2018年的520%。虽与炭黑类材料目前的市场地位仍有差距,但随着碳纳米管材料在动力锂电池领域的不断渗透,其市场份额有望在2021年超过炭黑成为动力锂电池的主流导电剂,并在2023年进一步达到75%以上的占有率。4.2量子点显示器性价比优秀,第二代技术应用在望根据量子点显示技术路线图的规划,第一阶段的技术形态为量子点光转换膜,即在液晶屏幕的基础上使用量子点光转换膜代替传统的荧光粉膜,蓝色光源通过量子点光转换膜转换为白色光源经液晶过滤为红绿蓝三色,可达到提升色域、改善液晶屏幕的显示质量的目的;第二阶段的技术形态仍然使用蓝光作为背光光源,使量子点直接接受蓝光后并发出红绿蓝三色光;最终阶段的目标技术形态为 QLED,即不需要额外光源的自发光技术。在针对中国纳米材料行业进行的访谈调研中,有资深专家表示目前领先的量子点显示器厂商如韩国三星公司(以下简称"三星")等,可在接下来的两三年内掌握第二阶段的量子点显示技术,中国的相关厂商如纳晶科技股份有限公司、宁波激智科技股份有限公司亦将紧随其后。作为纳米材料中的重要细分市场,第二代量子点显示技术的实现带来的产值将对整个纳米材料行业的市场规模带来可观的拉动作用。4.3 纳米抗菌材料前景可期,实用产品及投资初现随着国民生活水平的提高及个人卫生健康意识的提升,纳米材料在抗菌类产品中的应用有望成为中国纳米材料行业另一个重要的细分应用市场。纳米抗菌材料是指通过一定工艺被制备成纳米级别的抗菌剂,可用于与载体材料一起制备成下游生产环节使用的功能性材料。目前,已被发现具有抗菌性能的纳米材料主要包括金属型材料、光催化型材料、季铵盐修饰的无机材料、复合型材料等,其中金属型材料形成实用产品的较多。在载银无机抗菌材料领域,在中国占据主流的厂商为陶氏杜邦、东亚合成等外国化工企业,中国本土企业也成功研发出纳米银抗菌粉、油性纳米银抗菌添加剂、纳米银抗菌防臭纤维等实用型产品并形成销售收入。从下游产业分析,截至2018年,在美国、日本等发达国家,抗菌材料在日化、纺织等领域的渗透率在30%至40%区间,在医疗、家电领域可达50%以上。而中国抗菌材料在各行业的平均渗透率仅为5%,市场增量空间巨大,未来在技术成熟的驱动下,纳米材料在抗菌领域应用的市场表现值得期待。5、中国纳米材料行业竞争格局概述中国纳米科技企业多为中小型企业,产品主要面向细分市场,在不同的细分市场中均呈现市场集中程度高的格局。对于技术相对成熟、市场规模较大的碳纳米管、石墨烯等细分市场,生产技术的突破与普及同时也导致行业门槛降低、市场竞争加剧、参与者利润下滑等现象出现。在产品同质化程度较高的情况下,拥有资金及规模优势的大型企业往往能在激烈的竞争中取得优势,资金短缺、创新力不足的小型企业容易则难以立足。以中国碳纳米管导电浆料市场为例,现阶段的主要参与者仅在10家以内,其中前8名的纳米材料生产商共占据了90%以上的市场份额,分别是江苏天奈科技股份有限公司(以下简称"天奈科技")、深圳市三顺纳米新材料股份有限公司(以下简称"三顺纳米")、青岛昊鑫新能源科技有限公司(以下简称"青岛昊鑫")、惠州集越纳米材料技术有限责任公司(以下简称"集越纳米")、深圳市德方纳米科技股份有限公司(以下简称"德方纳米")、无锡东恒新能源科技有限公司(以下简称"东恒新能源")、深圳市金百纳纳米科技有限公司(以下简称"金百纳")、深圳市纳米港有限公司(以下简称"纳米港")。这些企业技术先进,近年来产品从材料、器件逐渐转向终端应用产品,凭借完整的产品线形成了一定的规模。对于技术及商业应用方面尚未找到突破口的冷门纳米材料,由于受到整体市场规模较小的限制,企业数量及规模普遍较小。纳米材料项目可行性研究报告编制大纲第一章总论1.1纳米材料项目背景1.2可行性研究结论1.3主要技术经济指标表第二章项目背景与投资的必要性2.1纳米材料项目提出的背景2.2投资的必要性第三章市场分析3.1项目产品所属行业分析3.2产品的竞争力分析3.3营销策略3.4市场分析结论第四章建设条件与厂址选择4.1建设场址地理位置4.2场址建设条件4.3主要原辅材料供应第五章工程技术方案5.1项目组成5.2生产技术方案5.3设备方案5.4工程方案第六章总图运输与公用辅助工程6.1总图运输6.2场内外运输6.3公用辅助工程第七章节能7.1用能标准和节能规范7.2能耗状况和能耗指标分析7.3节能措施7.4节水措施7.5节约土地第八章环境保护8.1环境保护执行标准8.2环境和生态现状8.3主要污染源及污染物8.4环境保护措施8.5环境监测与环保机构8.6公众参与8.7环境影响评价第九章劳动安全卫生及消防9.1劳动安全卫生9.2消防安全第十章组织机构与人力资源配置10.1组织机构10.2人力资源配置10.3项目管理第十一章项目管理及实施进度11.1项目建设管理11.2项目监理11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算12.2资金筹措12.3投资使用计划12.4投资估算表第十三章工程招标方案13.1总则13.2项目采用的招标程序13.3招标内容13.4招标基本情况表关联报告:纳米材料项目申请报告纳米材料项目建议书纳米材料项目商业计划书纳米材料项目资金申请报告纳米材料项目节能评估报告纳米材料行业市场研究报告纳米材料项目PPP可行性研究报告纳米材料项目PPP物有所值评价报告纳米材料项目PPP财政承受能力论证报告纳米材料项目资金筹措和融资平衡方案第十四章财务评价14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析14.5不确定性分析14.6财务评价结论第十五章项目风险分析15.1风险因素的识别15.2风险评估15.3风险对策研究第十六章结论与建议16.1结论16.2建议附表:

一文了解2020年中国纳米材料行业市场规模和竞争格局分析 集聚化发展趋势明显

产业布局早 部分研究跃居国际领先水平上世纪80年代末,我国政府开始重视纳米材料和技术的研究,90年代中期之后,从事纳米材料生产开发的公司不断增多,社会资金投入也不断增加,纳米材料应用产业兴起。进入二十一世纪,我国纳米材料产业进入稳定、健康的发展阶段,各种包括纳米材料在内的新材料产业法规、标准也陆续出台,纳米行业从业者的外部环境逐渐变好,竞争更加有序。我国纳米材料产业发展历程如下所示:我国纳米科技的布局较早,在纳米科技发展的开始阶段就同国际发展保持同步。同时,相关产业政策不断出台,从而明确我国纳米材料重点科研领域,为我国纳米技术发展指出具体方向。在各方面的共同努力下,我国纳米科学技术得到了较快速的发展,在前沿基础研究、应用技术与成果转化等方面均取得重要进展,跻身世界纳米科技大国,部分研究跃居国际领先水平。我国微电子加工技术现阶段也实现了质的飞跃。我国学者研制出阻变存储器(RRAM)/相变存储器(PCRAM)/纳米晶的存储单元器件,有效提升了我国在存储器领域的核心竞争力。继45nm之后,22nm尺度的集成电路芯片已开始生产,促进了我国半导体产业的发展。此外,我国学者还发明了荧光聚合物纳米膜传感技术,研制出荧光聚合物纳米膜痕量爆炸物探测器,可检测三硝基甲苯(TNT)、三亚甲基三硝胺(RDX)、奥克托今(HMX)、硝铵和黑火药等多种常见重要炸药,检测下限达到0.1ppt(1ppt=10-15g/mL),分析时间为6.5s,误报率小于1%,已获市场准入并实现了产业化。产品曾在北京奥运会和上海世博会等场所使用。应用领域广泛 市场规模不断扩大纳米材料是21世纪非常有潜力的材料,有非常广阔的应用。我国的纳米材料主要应用于纺织、塑料、陶瓷、涂料、橡胶、电子设备、包装、生物医药等行业。随着中国在世界制造业中心地位的确立,汽车、机械、电子设备、包装等行业必将保持持续增长,特别是经过纳米技术的改性,有优越产品性能的橡胶、塑料、涂料等产品的国内外需求都将有很大的增长。下游产业的快速发展为纳米材料提供了广阔的市场发展空间。我国新材料产业总产值已由2010年的0.65万亿元增至2015年的近2万亿元,年均复合增长率约为25%,按此趋势,2019年我国新材料产业总产值估计在5万亿元左右。纳米粉体材料由于技术含量高、产品应用广、具有良好的市场前景和发展空间,在新材料行业中成长性较好,目前纳米材料市场规模大约在千亿元左右。产业集群化趋势明显 国内企业快速发展在产业集群方面,目前全国纳米产业主要集群分别是在苏州和北京。其中苏州纳米产业规模占据全国50%以上,苏州工业园被公认为世界八大纳米产业集聚区,已形成了由纳米新材料、纳米生物技术、能源与清洁技术、微纳加工技术等四大纳米技术核心领域,并引领发展出上百个纳米细分技术领域,培育出了苏大维格、南大光电、晶方半导体、锦富新材等龙头公司。北京以怀柔地区的北京纳米科技产业园为中心打造产业集群,致力于纳米科技在能源、电子、环境、生物医药四大领域的应用,并以下游应用带动上游纳米材料、纳米加工、纳米器件等产业链各环节,拥有北京首创、安泰科技、中科纳新公司、中科纳通公司、集盛星泰公司、首科喷薄等一批纳米材料龙头企业。就研发而言,我国纳米产业基本形成各具特色的两大纳米研发中心布局。在政策的支持鼓励下,国内民营企业近年来得到了长足的发展,填补了我国纳米金属材料产业化的空白,镍粉、铜粉等多种产品得到了国内外下游客户的认可,市场份额不断扩大。更多数据请参考前瞻产业研究院《中国纳米材料行业发展前景与投资预测分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资等解决方案。

旅程

纳米技术在各产业的发展趋势展望

何丹农,纳米技术及应用国家工程研究中心主任。沈应龙,上海市科学学研究所产业创新研究室助理研究员。纳米材料,是指在三维空间中至少有一维处于纳米尺度(0.1~100纳米)范围或由它们作为基本单元构成的材料。纳米材料及其相应的制取、组合技术已成为21世纪世界科技发展中的主流方向,也是世界各国最主要的研究热点之一。当前,我国在纳米领域发表的SCI论文累计已经跃居全球第一,同时相关专利的申请量累计达20.9万件,占全球总量的45%。然而,在美国专利及商标局的专利统计数据中,即使不计美国自身,我国大陆地区的专利数量也居于韩国、日本、中国台湾地区之后,说明我国相关产业参与国际化竞争的程度仍然不够深。据《前瞻产业研究院纳米材料行业报告》预计,2022年我国纳米材料市场的规模可达1955亿元水平。除了在新材料产业中形成了较为明确的纳米材料板块外,纳米技术还广泛影响了环境、能源、信息、生命健康等诸多其他产业,并且具有极其广阔的发展前景。未来,以下产业或领域有望通过纳米技术的应用实现技术或市场突破。●材料产业●纳米材料的发展能够带动整个材料产业的结构调整和升级换代,全面支撑国民经济和国防建设的需要。纳米材料产业在未来5~10年预计将可为上海市带来直接经济效益超过50亿元,间接经济效益超过100亿元。●纳米粉体(颗粒)材料纳米氧化钛、介孔氧化硅等无机纳米粉体可以用于吸附、催化药物载体等用途。不同材质的纳米粉体可以用作各种不同用途的着色染料,如汽车涂料、塑料加工以及高档油墨和印刷行业的(彩色)金属颜料,高档珠光颜料,新型晶片颜料,玻璃颜料,防伪颜料和红外反射(或透明)颜料等。聚合物纳米复合材料有望替代金属材料,用于发动机齿轮、油过滤器等汽车结构件。●纳米纤维窄分布超细微纳米纤维的织物同时具有高效、低阻的特性,并具有空气滑移效应,可以用于各类过滤、防护产品,如防霾口罩、空气净化器用静电纺纳米滤芯、防雾霾纱窗静电纺纳米滤层等,提升产品的性能。将气凝胶制备为纳米纤维,可以获得高效轻质的保暖材料,能够制备出单件质量在500克以下的超轻纳米纤维保暖服,可用于航空航天、潜水和军事等不同领域。快速可控的光响应、光驱动变形纳米功能纤维,可以用于制备在复杂环境下具有自我保护功能的服饰。具有持续传输、共价抗菌和组织细胞引导功能的纳米纤维制备的复合功能敷料可用于糖尿病足、静脉溃疡等多种普遍性慢性难愈病症的治疗。纳米级别的陶瓷纤维、二氧化硅纤维具有明显的柔性,是能够用于各类高强、阻燃、高温隔热需求场合的新型复合材料。纳米纤维防水透湿膜有望突破传统产品耐水压和透湿量难以同步提升的技术瓶颈,同时实现高耐水压、高透湿量的功能。●纳米功能塑料具有99.9%高效抗菌性能并可保持2年以上的纳米抗菌塑料有望实现规模化制备,在家用电器、汽车、食品包装、医疗等领域具有广泛的应用前景。利用石墨烯作为填料可使塑料具有导热、导电性能,可替代换热器中的铜管。●纳米功能涂层利用纳米技术对涂层表面的微观结构与形貌进行设计,可提高涂层的附着力与功能性,推动海洋重防腐、长效防污、减阻、抗粘、超硬、防覆冰、环保等功能的海洋领域特种涂层涂料的研制。智能纳米涂料将具有突出的高强度、耐久性,并且可以附加除异味、除甲醛、智能调湿、自润滑、自修复、智能磁性等各种特殊性能。纳米技术还可以赋予汽车面漆及电子产品表面涂层更好的耐水、耐划伤、耐紫外线、耐酸雨等性能。●先进水凝胶材料具有纳米结构的新型手性水凝胶可在人体细胞生理和病理研究、医药筛选等研究中用于仿生微环境材料,此外还可以用于化妆品、整容等领域。●环保领域●在环保领域,纳米材料和技术的应用能够提高能源的利用效率,并在空气污染控制、水质控制、土壤污染控制等领域发挥作用。未来5~10年,纳米技术在环保领域预计将可为上海市带来直接经济效益超过20亿元,间接经济效益超过50亿元。●空气净化车库、公路隧道等半封闭空间机动车污染物主要包括一氧化碳、氮氧化物和碳氢化合物等。采用纳米技术有望实现以上污染物的低成本快速检测,并通过催化、吸附等方式实现无二次污染的常温净化。采用纳米技术还可以针对室内空气中常见的低浓度、复合性空气污染物,如挥发性有机物(VOCs)进行有效富集与高效去除。●水净化发展高效吸附剂、催化剂、絮凝剂和多功能膜等纳米材料,以及以微纳米气泡为代表的先进纳米技术和联用技术,有望实现江河湖海等自然水体的高效低成本治理。等离子激元和上转换发光等效应的宽光谱响应光催化氧化纳米材料,将能够在3~5年内实现成本更低、效果更好的环境污染物高级氧化技术应用。快速大容量纳米晶吸附材料能够用于水体的重金属吸附。●多种污染物快速识别与检测特殊结构与形貌的纳米材料可用于研发自然水体或工业废水中低浓度抗生素、农药和重金属等的新型快速检测方法。利用不同污染物与纳米材料选择性的作用机制,可实现土壤污染物的分离、检测和甄别。●能源领域●纳米技术是发展清洁低碳能源的重要途径,在太阳能转化为电能、化学能(如氢气、甲醇等),二氧化碳转化为甲烷,热能转化为电能,电解水制氢以及有机小分子高效制氢等方面均有重要作用。未来5~10年,预计纳米技术在能源领域将为上海市带来直接经济效益超过20亿元,间接经济效益超过100亿元。●能源转换纳米能源催化材料可以实现甲烷高效活化、合成气高选择性转化和二氧化碳的光电催化转化,满足碳-氧、碳-碳或碳-氢的高效选择性转化应用需求。半导体和金属纳米电催化剂可以实现直接利用太阳光对水、氮气和二氧化碳等环境分子进行光电催化转化。新型含氟纳米材料可实现电能与化学能、热能之间的高效转换,并能够相对独立地调控热电转换材料的各项参数,可实现温差发电及热电制冷等方面的初步应用。纳米技术还可实现具有高催化活性和高稳定性的非贵金属催化剂对传统贵金属催化剂的替代,发展出新型高附加值的电催化制氢过程,实现氢气制备与乙醇等有机化合物的转化反应同步进行,显著提升电解水制氢的工业应用价值。●能源存储基于锂、钠、硼、氮、镁、铝等轻质元素的新型高氢量纳米储氢材料(络合物或亚胺基材料),有望实现吸放氢温度小于200℃、可逆储氢量大于5wt%、循环寿命大于500次的固态储氢设备。采用纳米技术可提升电极、隔膜的性能,推动锂硫电池、锂空气电池、钠离子电池、液流储能电池等新一代二次电池的发展。●能源生产通过超薄晶体和纳米结构精准调控等技术,可以提高各类薄膜太阳能电池的转化效率和热、湿稳定性,并推动器件的柔性化发展。非贵金属催化剂、纳米结构膜电极、纳米固体电解质等技术,能够显著提高燃料电池的寿命、稳定性和效率。●信息领域●以新型纳米材料及微纳制造工艺为基础,与现有集成电路产业中硅基工艺结合的新型纳米材料、低功耗柔性器件以及新型纳米光电器件和传感器件,将普遍应用于电子产品、环境监测、食品安全、电子通信及互联网等领域。未来5~10年,纳米材料与技术在信息领域预计将为上海市带来直接经济效益超过200亿元,带动相关产业产值1000亿元。●电子信息产业基础材料石墨烯、氧化锡、黑磷等新型低维晶体材料的研究为下一代计算机的发展打开了新的道路。高性能及安全环保的纳米抛光材料、电子浆料和电子墨水等产品,有望在5年后实现规模化生产,并全面实现进口材料的替代。●电子器件及集成高性能超柔性半导体单晶纳米薄膜(<100纳米)大规模转印(晶圆级)是集成电路行业发展的关键技术。纳米材料与器件是新型柔性智能器件与服装发展的基础。例如,纳米纤维能量转换器可用于制备智能发电织物,高效收集人体生物机械能,实现电子产品的自驱动或自供电功能;高灵敏度的可穿戴纳米压电传感检测系统,可实现对人体健康状况(如脉搏、心电功能、脑电波、血糖、pH值和乳酸等)的实时跟踪和分析;智能电子皮肤、织物传感器、弹性织物电路和柔性织物天线等也均需依托纳米技术发展。●传感及显示器件新型纳米传感器件可以集成光、电、磁、化学及生物活性等多方面特性,并可与微纳机电系统(NEMS/MEMS)器件制备技术相结合在环境监测、食品安全、汽车电子和军工等领域中广泛应用。新型光电转换机制的纳米级像素成像芯片,有望突破可见光衍射极限,推动摄影、摄像、高分辨X射线衍射成像等设备性能的显著进步。基于量子点材料的平板显示器件,比传统LED背光的传统液晶电视在画面质量与节能环保上更具优势,已成为业内液晶电视新的发展方向。●生物及医学领域●在生物及医学领域,纳米技术在组织修复与替代材料、诊断与治疗、基因与细胞等方向均有应用前景。应用纳米技术革新现有诊疗技术,有望取得颠覆式创新成果并实现临床上的应用,如新型组织再生材料、体内外精准诊断纳米技术和新型抗肿瘤纳米药物等。未来5~10年内,纳米技术在这一领域预计可实现30亿~50亿元的产业链,并产生百亿级规模的间接经济效益。●组织修复与替代纳米生物材料具有良好的理化与生物安全性能,可用于发展口腔科应用的纳米复合材料、黏固剂、牙髓密封材料以及牙齿再造材料、人工血管、骨科修补材料等。具有组织诱导功能的纳米医学材料,可用于新型器官3D打印、新型组织工程和新一代植介入医疗器械,有望催生多种组织替代物、功能修复物、个性化定制增材制造产品和新一代植介入医疗器械、新型功能药用辅料的问世。●诊断与治疗技术由生物大分子构成并利用化学能进行机械做功的纳米系统又被称为分子马达,可实现肌肉收缩、物质运输、DNA复制和细胞分裂等生命体活动的体外模拟。基于对纳米颗粒-生物界面作用和纳米颗粒-环境因素作用进行的研究,有望研制出能够穿过生物屏障并进入病灶组织或疾病细胞的功能化靶向纳米载体材料和纳米机器人。基于纳米技术的药物递送新技术,可显著改善药物溶解性,提高药物的生物利用度,绕过某些生理屏障,增强药物利用效率。具有主动靶向功能的药物载体材料和安全高效的包载化学药、生物药的纳米药物,能够对重大疾病如肿瘤进行有效治疗。由单分散、对人体安全的无机纳米材料组成的理疗纳米系统,具有较长的血液循环时间,进入肿瘤后能够特异性地响应肿瘤的微环境,掌握其在肿瘤部位的有效富集、化学反应导致的肿瘤细胞的变异、凋亡的化学动力学和生物学机制的情况。纳米医疗器件可实现血糖等人体指标的实时检测和调控,提高糖尿病等代谢性疾病的治疗水平。新型荧光磁性纳米探针可追踪体内树突细胞导向到淋巴结的迁移过程,这一技术有望发展为癌症成像检测及早期诊断的新方法,有助于对治疗实时监控。●基因与干细胞研究利用纳米技术改造天然带有孔道的蛋白或者合成纳米孔,可以开发出单分子测序技术,实现传统测序技术所需要的扩增能力,低成本、高准确率地直接测定核酸。高效负载RNA、DNA和细胞活性因子等的纳米载体材料可实现高效安全的治疗效果。纳米辅助基因快速测序、纳米颗粒调控细胞信号通路和调控机体免疫反应等技术有望推动基因工程技术的全面发展。二维、三维纳米结构可调控干细胞增殖与分化,利用这类纳米材料作为生物分子载体可诱导干细胞的迁移与定向分化,也可促进干细胞分离、纯化和富集。利用纳米材料作为干细胞载体,可提高生物载体功效及降低药物副作用。基于纳米技术开发的新型量子点和纳米造影剂可实现对干细胞的标记和示踪。●航天及军工领域●航天与军民融合方向是未来纳米技术发展及应用的重要方向,航天领域对材料轻质化、防辐射性、高力学性能、高抗腐蚀性和综合光电声磁性能的超高要求,使纳米技术有望在航天领域大显身手。这一方向预计5年后可产生500亿元的直接产值和5000亿元的间接产值,将为我国航天与军民融合事业的发展做出重大贡献。基于纳米技术制备的超结构及阵列,能够制造突破黑体热辐射效率极限的中远红外窄带热辐射器。高导热陶瓷基板用粉体材料、轻质高强纳米合金材料、纳米太阳帆是未来航天探索的重要材料基础。光学微结构的超精密纳米加工与检测为我国超高灵敏光电复合探测技术、航天领域高分辨率空间探测器和高精度导航系统的研发和改进提供了重要支撑。新型纳米隐身涂层、纳米吸波材料、特种密封材料及多功能复合材料能够显著提高军事装备的性能。

去国旬月

2018年我国纳米材料市场规模,纳米材料医学领域应用前景广阔

一、纳米材料行业定义及分类纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。纳米材料的分类方法主要有以下几种:纳米材料的主要种类资料来源:华经产业研究院整理现阶段,纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段。纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。近年来,随着国家和各地纳米攻关计划、“863”计划、“973”计划等的实施,我国纳米技术研究水平和研发能力逐渐接近国际主流方向,在纳米材料和纳米结构、纳米器件、纳米效应与表征等方面取得了一批居于国际前沿的创新研究成果,并部分实现产业化。二、纳米材料行业发展现状从全球范围来看,纳米粉体材料中的纳米碳酸钙、纳米氧化锌、纳米氧化硅等几个产品已形成一定的市场规模;纳米粉体应用广泛的纳米陶瓷材料、纳米纺织材料、纳米改性涂料等材料也已开发成功,并初步实现了产业化生产;纳米粉体颗粒在医疗诊断制剂、微电子领域的应用正加紧由实验研究成果向产品产业化生产方向转移。受益于纳米技术的不断革新,生产工艺的逐渐完善,纳米材料的生产成本不断降低,新的应用领域不断开拓的影响,全球纳米材料市场规模持续扩大。资料来源:华经产业研究院整理近年来,我国纳米材料制造行业发展迅速,在国家战略的指引下,纳米材料和纳米技术在能源、环境、资源和水处理等产业应用出现了良好的开端,例如纳米净化剂、纳米助燃剂、纳米固硫剂、用于水处理的纳米絮凝剂等新型产品相继开发成功,纳米材料的应用范围正在逐步扩大。随着纳米材料下游需求的持续拉动,以及纳米技术的不断革新,其需求规模仍将保持快速增长趋势。2017年我国纳米行业市场规模快速增长达到了891.7亿元,同比2016年的692.3亿元增长了28.8%,2017年我国新材料行业产值规模26550亿元,纳米材料规模占比达到了3.36%。近几年我国纳米行业规模及占比情况如下图所示:资料来源:华经产业研究院整理三、纳米材料的主要应用领域1、纳米材料在医学领域应用纳米材料在医学领域已应用于药物载体、癌症治疗、基因治疗、抗菌材料、组织工程、医学诊断等方面,给人类带来了许多好处。然而,有关纳米材料毒理学的报道也很多,由于纳米材料具有小尺寸效应、表面和界面效应以及量子尺寸效应等特性,可能引发特殊的生物学效应,给人类健康和环境带来负面影响。纳米技术在促进医药、工业发展的同时,对人类健康和环境卫生也同样构成潜在的威胁。相同化学组成的纳米材料与其他材料相比具有许多不同的物理、化学和生物学特性,其潜在毒性、次级效应、生物降解能力也存在质疑。如何评价纳米医药的安全性和毒性,如何优化纳米技术使这些医药材料适合于人体生物系统,以及如何避免或降低可能出现的毒副反应,成为摆在人们面前的一个重要问题。简而言之,和其他前沿学科一样,纳米医学也充满了机遇和挑战。但我们完全可以相信,在不远的将来,随着对其在生物医学中应用研究的深入及生物安全性问题的阐明和解决,纳米技术将成为医学研究和临床治疗中的一个重要手段,为许多重大疾病患者带来福音。(1)在药物治疗方面当颗粒小于某一尺度时,较小颗粒的溶解度大于较大颗粒,因此,控制药物颗粒大小就可以控制颗粒的溶解速率。纳米颗粒具有非常大的溶解度,控制纳米颗粒的大小及粒度分布,可以控制药物释放速率,提高功效和药物有效利用率,如具有生物活性的各种肽类、治疗胰岛素依赖型糖尿病的胰岛素等。而且磁性纳米粒子在分离癌细胞和正常细胞方面经动物及临床试验已经获得成功,显示出了引人注目的应用前景。(2)在药物载体方面纳米材料作为药物载体在医学领域中广为应用,是现代药剂学发展的重要方向之一,将磁性纳米颗粒与药物结合,注入到人体内,药物可在病变部位集中,从而达到定向治疗的目的。其优点是:可缓释药物,从而延长药物作用时间;达到靶向输送药物的目的;在保证药物作用的前提下,减少给药剂量,减轻或避免毒副反应;提高药物的稳定性,有利于储存;保护药物,防止其被核酸酶降解;建立一些新的给药途径等。载药纳米颗粒可作为异物被巨噬细胞吞噬,在网状内皮系统聚集,纳米材料药物载体的装载、可控释放以及靶向传输对人类重大疾病的治疗具有重大的意义。(3)在医疗诊断方面磁共振成像是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,1973年开始应用于医学临床检测,现已成为临床上常用的无侵入性肿瘤早期诊断手段。MRI需要借助造影剂来提高诊断能力,磁性纳米粒子在MRI领域中常常作为造影剂使用,以此提高MRI图像的对比度和清晰度,造影剂可缩短质子的弛豫时间,间接地改变质子所产生的信号强度,提高人体肿瘤与正常部位的成像对比度,粒径在3~10nm的超顺磁氧化铁颗粒已经被制成磁共振的成像剂应用于临床诊断。2、信息产业中的纳米技术纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些元器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面。3、环境产业中的纳米技术纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。4、能源环保中的纳米技术合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。5、精细化工方面的应用精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。四、纳米材料行业前景展望纳米材料自问世以来,受到人们的高度关注,目前已成为最为活跃的研究领域。纳米材料在电子行业、生物医药、环保等领域都有着广阔的开发潜力。纳米材料应用到各行各业的同时,纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。目前随着生物技术、先进制造技术等领域的迅猛发展,对纳米材料的要求也越来越高。元件的小型化、智能化、高集成和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。同发达国家相比,我国在纳米科技领域的研究比较滞后,目前我国已初步具备开展纳米科技的研究条件,国家重点研究机构及相关高科技技术企业正加快对纳米材料的研究步伐;在纳米科技领域,我国在“十二五”期间取得了重要的研究成果。随着新材料产业“十三五”发展规划的提出,我国将大力推进纳米材料、半导体材料等领域研发。纳米材料和技术在节省能源和资源方面将发挥着至关重要的作用。结合国家战略需求,近些年来,纳米材料和纳米技术在能源、环境、资源和水处理产业呈现了良好的发展势头。随着纳米净化剂、纳米助燃剂等新型产品相继开发成功,在这些产品基础上,发展了一些新型纳米产业,前景看好。

大力士

2019年中国新材料产业市场现状及存在问题分析(图)

中商情报网讯:新材料产业作为我国七大战略性新兴产业和“中国制造2025”重点发展的十大领域之一,新材料产业被认为是21世纪最具发展潜力并对未来发展有着巨大影响的高技术产业。经过几十年奋斗,我国新材料产业从无到有,不断发展壮大,在体系建设、产业规模、技术进步等方面取得明显成就,为国民经济和国防建设做出了重大贡献,具备了良好发展基础。随着科技的发展,新材料的应用领域与日俱增,除了广泛应用于航空航天等高技术领域,还可用在文体用品、纺织机械、医疗器械、生物工程、建筑材料、化工机械、运输车辆等方面。未来,随着新能源等行业的快速发展,中国新材料需求将呈现持续增长的趋势发展,到2025年其产值将突破10万亿元,发展前景十分广阔!一、新材料的分类按材料的性质分,新材料可分为结构新材料(以软科学性能为主要性能的材料)和功能新材料(以物理性能为主要性能的材料)两大类。按基本组成分,新材料主要可分为新型金属材料、新型无机非金属材料、新型高分子材料和先进复合材料四大类。根据用途分,新材料又可分为能源新材料、信息新材料、磁性新材料、航航天新材料、生物医用新材料、化工新材料、超硬难熔材料、保温材料、纳米料、高温超导材料、新型建筑材料、新型有色金属合金材料、新型照明材料、新型生态材料等等。二、新材料产业现状目前,我国新材料产业逐渐形成集群式发展模式,形成以环渤海、长三角、珠三角为重点,东北、中西部特色突出的产业集群分布。环渤海、长三角和珠三角地区作为目前国内三大综合性新材料产业聚集区,企业分布密集,高校及科研院所众多,并拥有资金、市场等优势,新材料产业的高端要素向这些区域聚集。作为7大战略新兴产业之一,目前我国新材料产业发展势头良好,新材料开发区数量也呈现逐年增长的趋势。据不完全统计,目前我国新材料开发区逾300多家,其中江苏省开发区数量全国第一,其数量达到了43家。三、发展存在问题1.资金紧张新材料产品的研发具有投入大、周期长、产业风险放大的特点,没有长时间的持续投入,很难开发出稳定的产品。我国新材料企业涉及金属新材料、复合新材料、化工新材料、信息新材料、纤维新材料等,多为中小型企业,年产值多在1亿元以下,多为初创型或发展期企业,现金流压力较大。2.技术水平低新材料行业属于知识、技术、资金均为密集型新兴产业。新材料行业不靠大规模生产来提高竞争力,而靠独特优良性能取胜,与新技术、新技术密切相关,然而我国新材料企业科技创新能力不强,跟踪仿制多,缺乏拥有自主知识产权的产品及技术,在高端产品领域缺乏竞争力。3.环保压力大新材料产业对环境的破坏也比较常见,急需解决。例如稀土材料的开采和冶炼对环境的破坏程度已经严重制约行业的发展。一些为解决环境污染问题而开发的新材料在生产过程中也会对环境有极大的破坏。随着我国环保督查压力的增强,企业生产受到较大影响,而中小企业在环保投入上缺乏资金支持。4.产业结构不够合理目前,我国部分新材料领域的产业结构不够合理,新材料产业投资支持的是一些“点”,尚未形成以点带线、以线带面的联动效应。此外,作为发展主体的新材料企业普遍规模较小,产业发展缺乏统筹规划,投资分散,成果转化率低,产业链不够完整。有些行业的新材料企业大多集中在中下游环节,产业配套能力不强。更多资料请参考中商产业研究院发布的《2019-2024年中国新材料产业市场前景及投资机会研究报告》,同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

灵长类

新材料行业深度报告:发展空间广阔,万亿市场爆发

1、新材料行业概况材料工业作为我国七大战略性新兴产业、“中国制造 2025”重点发展的十大领域和科 创板六大领域之一,是我国重要的战略性新兴产业,也是制造强国和国防工业发展的 关键保障。新材料产业由于其技术密集性高、研发投入高、产品附加值高、国际性强、 应用范围广等特点,已成为衡量一个国家国力与科技发展水平的重要指标。1.1 新材料的定义在技术高速发展的背景下,新材料的定义于20世纪90年代被首次提出,并于本世纪初 期开始逐渐成熟并广泛使用。在科技部2004年出版的《新材料及新材料产业界定标准》 中,首次将新材料定义为:新出现或正在发展中的具有传统材料所不具备的优异性能 的材料;高新技术发展需要,具有特殊性能的材料;由于采用新技术(工艺、装备), 使材料性能比原有性能有明显提高,或出现新的功能的材料。国务院《新材料产业“十二五”发展规划》中进一步将新材料定义为:新出现的具有 优异性能和特殊功能的材料,或是传统材料改进后性能明显提高和产生新功能的材 料,其范围随着经济发展、科技进步、产业升级不断发生变化。1.2 新材料的分类根据《新材料产业发展指南》,新材料主要包括: 先进基础材料:有色金属材料,高分子树脂等先进化工材料,先进建筑材料、先 进轻纺材料等; 关键战略材料:重点从下一代信息技术产业、高端装备制造业等重大需求,以耐 高温及耐蚀合金、高强轻型合金等高端装备用特种合金,反渗透膜、全氟离子交 换膜等高性能分离膜材料,高性能碳纤维、芳纶纤维等高性能纤维及复合材料, 高性能永磁、高效发光、高端催化等稀土功能材料,宽禁带半导体材料和新型显 示材料,以及新型能源材料、生物医用材料等; 前沿新材料:石墨烯、金属及高分子增材制造材料,形状记忆合金、自修复材料、 智能仿生与超材料,液态金属、新型低温超导及低成本高温超导材料等。1.3 国际新材料发展情况材料是人类社会的基本组成要素和关键性资源,伴随着社会生产模式的发展而发展。 新材料与现代技术的联系日益密切,现阶段,随着新材料应用领域的不断突破,科学 技术和社会生产力也将持续发展并推动整个社会的技术变革。宏观政策引导力度较大,全球新材料发展迅速。随着新材料研究的不断深入和应用领 域的逐步扩大,新材料发展水平已成为衡量国家之间经济发展、科技水平与国防实力 的重要标准,同时也是限制国家经济增长的重要因素。因此,各国相继出台相应产业 政策以促进新材料行业的高速发展。总体规模增长迅速,先进基础材料、前沿新材料发展较快。在各国产业政策的积极引 导下,全球新材料产业规模快速增长,2018年达到2.56万亿美元,同比增长11.2%, 并预计2019年将达到2.82亿美元,同比增长约10.16%,2016-2019年复合增长率超10%。 同时,由于3D打印材料和石墨烯等新兴产业技术的不断突破,前沿新材料增长较快, 未来发展空间巨大。产业分布不均,差异化特征显著。目前,美国、日本和欧洲等地区在经济实力、核心技术、研发能力、市场占有率等方面占据绝对优势,拥有成熟的新材料市场,多数产 品占据全球市场的垄断地位,是新材料产业主要的创新主体。其中,美国在新材料全 领域位于前列;日本在纳米材料、电子信息材料等领域具有优势;中国在半导体照明、 稀土永磁材料、人工晶体材料等领域发展较好;韩国在显示材料、存储材料,俄罗斯 在航空航天材料等方面具有比较优势。但随着中国、印度等国家相关领域的快速发展 和新一轮科技革命的来临,全球新材料市场的重心呈现出逐步向亚洲地区转移的趋 势,全球技术要素和市场要素配置方式将会发生深刻的变化,地区发展的差异化可能 会继续加剧。产业集约化发展,高端材料垄断严重。随着经济一体化在全球范围内的发展,新材料 产业逐渐向横向、纵向扩展,上下游产业联系日益紧密,产业链日趋完善,多学科、 多部门联合进一步加强,集约化、集群化和高效化特征显著。集约化的发展模式促使 了产业战略联盟的形成,有利于产品研发与下游应用的融合,但另一方面也促进了寡 头垄断的逐步形成。一些全球知名企业开始结盟并进行跨国合作,通过并购重组构建 整个产业链生态。1.4 国内新材料发展情况政策驱动,新材料产业市场规模高速发展。为了提升新材料领域竞争力,实现我国从 材料大国到材料强国的转变,我国先后提出了《中国制造2025》、《新材料产业发展指 南》、《“十三五”国家战略性新兴产业发展规划》、《有色金属行业发展规划(2016-2020 年)》、《稀土行业发展规划(2016-2020年)》等重要指导性文件来支撑我国新材料行 业的发展。据中国产业信息网统计,中国2019年新材料产业总产值为4.5万亿元,预计2022年将达到7.5万亿元,复合增长率高达18.72%。其中,特种金属功能材料、现 代高分子材料和高端金属结构材料在产业结构中占比较高,分别为32%、24%和19%, 前沿新材料仅占总额的3%。全面布局新材料,部分省市产值已达万亿。目前我国新材料产业已形成以环渤海、长 三角和珠三角为中心的产业集群式发展模式,各区域之间产业种类与发展规模均存 在差异。其中浙江、江苏、广东和山东四个城市新材料工业总产值均超万亿,以浙江、 江苏为代表的长三角地区专注于对新能源汽车、电子信息、医疗和高性能化工等领域 新材料的研发生产,以广东为代表的珠三角则以高性能钢材、高性能复合材料和稀土 等领域新材为主,以山东为代表的环渤海更倾向于战略基础材料、高性能材料、特种 材料和前沿新材料的研发生产。全国新材料布局呈现多元化发展,各具特色,互有优 势。关键材料尚有空白,进口依赖现象严重。中信部2018年7月在“2018国家制造强国建 设专家论坛”上表示“中国制造业创新力不强,核心技术短缺的局面尚未根本改变”。 据中信部对全国30多家大型企业多种关键基础材料调研结果显示,32%的关键材料尚 属空白,52%依赖进口。其中,95%的计算机和服务器通用处理器的高端专用芯片、70% 以上智能终端处理器和绝大多数储存芯片均对进口依赖严重。装备制造领域中,95% 以上高档数控机床、高档装备仪器、运载火箭、大飞机、航空发动机、汽车等关键精 加工生产线上的制造及检测设备依赖进口。新材料投资规模稳步提升,行业发展机遇挑战并存。据前瞻研究院统计,随着政策支 持以及外部环境的推动,大量资本投入新材料行业,整体发展迅速,2017-2018年分 别有115起、74起和54起投资,累计投资规模高达224.41亿元。但由于新材料行业性 质特殊,虽然该行业利润水平较高、竞争者较少,但行业壁垒高、投入资本大,未来 发展机遇与挑战并存。2、下游需求旺盛,新材料市场未来可期需求旺盛,下游产品“激活”新材料产业发展动力。新材料产业涉猎领域众多,由于 行业自身特点、所处周期以及下游市场不同,不同行业对于新材料的需求以及发展空 间不同。基于产品需求角度,当下下游需求最旺盛、发展空间最大的新材料领域为 5G 新材料、半导体新材料、面板新材料、高分子新材料、高性能纤维新材料和其他前沿 新材料。随着下游需求逐步爆发,上述行业有望成为新材料领域最具前景的板块,市 场空间广阔。2.1 5G材料5G 产业链主要包括接入网产业链、承载网产业链和核心网产业链。5G 概念主要由 5G 终端和 5G 网络组成,其中 5G 终端主要包括手机和物联网终端等,5G 网络主要分为 三个领域,分别与通信网络架构一一对应,其中接入网和承载网是最值得关注的。下游领域丰富,多领域需求巨大。据 IHS 预测,2035 年 5G 在全球创造的潜在销售活 动的市场规模将达 12.3 万亿美元,其中制造业占比最高,预计将达到 3.4 万亿美元, 其次影响最大的分别为信息通信和批发零售业,预计市场规模分别为 1.4 万亿和 1.3 万亿美元,其他多个领域均有较大发展空间。2.1.1 微波介质陶瓷5G 时代,小型化陶瓷介质滤波器优势明显。传统的滤波器一般由金属同轴腔体实现, 通过不同频率的电磁波在同轴腔体滤波器中振荡,保留达到滤波器谐振频率的电磁 波,并耗散掉其余频率的电磁波。陶瓷介质滤波器中的电磁波谐振发生在介质材料内 部,没有金属腔体,因此体积较上述两种滤波器都会更小。5G 时代,Massive MIMO (大规模天线技术)对天线集成化的要求较高,滤波器需要更加的小型化和集成化, 为了满足 5G 基站对滤波器的相关需求,更易小型化的陶瓷介质滤波器有望成为主流 解决方案。目前,华为、爱立信已经开始布局陶瓷介质滤波器,其他设备商也在逐步开始采用陶 瓷介质滤波器,预计 2021 年全球主流设备商会逐步采取全陶瓷方案。技术升级支撑产品革新,滤波器行业前景可期。随着 5G 时代来临,基站滤波器市场 有望持续稳定发展。据产业信息网统计,整个 5G 周期中,预计全球将建设 1000 万个 基站。其中,中国将建设约 606 万个基站,滤波器总需求将接近 600 亿元人民币。5G 时代巨大的市场增量,将为滤波器行业带来蓬勃发展的良机。随着陶瓷介质滤波器应用的逐步展开,微波介质陶瓷粉末、粘接剂和银浆等上游产 品需求有望同步增加。2.1.2 高频基材高频基材是 5G 通信行业发展的核心材料。PCB(印刷电路板)是电子设备的重要组 成,而 PCB 制造的关键材料为基材,PCB 基材包括基板(覆铜箔层压板)、预浸材料 (半固化片)和铜箔等。5G 时代,传统基材材料一般很难达到高频通信所必需的电 性能要求,易产生“失真”现象。因此,为了减少传输过程中产生的损耗,PCB 基材 要选用低介电常数(Dk)和介质损耗(Df)的高频基材。同等信号覆盖区域所需 5G 宏基站数量较多,高频覆铜板需求较大。5G 波长极短,频 率极高,信号趋近于直线传播,绕射和穿墙能力极差,传播介质中的衰减情况严重, 因此 5G 的基站需求量远高于 4G 时代。根据赛迪顾问数据显示,5G 宏基站建设数量 约为 4G 宏基站数量的 1.1 倍—1.5 倍。为了满足 5G 高频率的特性,高频覆铜板的下 游需求将得到释放。微小站建设带来高频高速覆铜板增量需求。与以往的通信建设不同,5G 时代更注重 于对室内网络的覆盖。因此,5G 建设将同时建造宏基站、微基站、皮基站、飞基站, 其中微基站、皮基站、飞基站合称微小站。和宏基站相对比,微小站型号小,安装便 捷,能够更好对室内网络进行覆盖。因此,微小站的普及和安装,将给高频高速覆铜 板带来增量新需求。高频基材应运而生,市场规模持续增加。在 5G 时代,伴随着高频、高速、高数据量 的技术要求,很多原有的中低频通讯材料会被淘汰,高频基材未来用量有望大幅增加; 与此同时,Massive MIMO 技术的实现使 5G 基站大幅提高了天线容量;此外,由于高 频电磁波本身穿透性差的原因,5G 小基站的建设规模会远高于 4G 时代,这也将进一 步推动高频 PCB 在内的高频通信材料规模的增长。预计 2023 年,PCB 市场规模达到 262.4 亿元,高频基材市场规模为 86.6 亿元,市场规模持续增加。随着高频基材需求的不断增加,与其处在同一产业链上的金属铜箔、合成树脂等上游 产品需求有望同步增加。2.1.3 塑料天线振子振子是天线内部最重要的功能性部件。传统的振子是采用金属材料压铸成型,或是钣 金件、塑料固定件和电路板组合的形式,但振子重量大、成本高、安装复杂。5G时代,对通信质量的要求更高,振子的数量将大幅提升,从原来的一个天线单扇面 2- 18 个振子,提升到 64 个、128 个,更高甚至达到 256 个,单个基站的扇面则为 3 面 或 6 面,对振子的数量需求较高。因此,具有重量轻、零件集成度更高、模块一致性 好、生产效率高、生产成本低等特点的塑料天线振子逐渐成为首选方案。相比于现有 4G 网络(10-40 个天线振子),5G 时代由于频段更高且采用 Massive-MIMO 技术,天线振子尺寸变小且数量将大幅增长。下游需求旺盛,塑料振子市场可达百亿。随着 5G 布局的逐步展开,基站建设将带动 对塑料振子的巨大需求。据中国产业信息网统计,2020 年塑料振子市场规模预计将 达到 12.7 亿元,2021 年达到 23.1 亿元,同比增加 81.9%,整个 5G 行业周期内,预计宏基站塑料振子市场规模约 100 亿元。2.1.4 LCP与MPI材料随着 5G 商用化,天线材料市场广阔。天线作为无线通讯中重要的一环,其市场需求 将随着 5G 的逐步推广迎来重大的发展契机。尤其是 5G 对于高频、高速和小型化的 较高要求,催生了 LCP 材料和 MPI 材料成为了 5G 时代天线材料的候选者。LCP 和 MPI 材料优势明显,5G 时代有望脱颖而出。随着 1G、2G、3G、4G 的发展,手 机通信使用的无线电波频率逐渐提高,其中 5G 的频率最高,分为 6GHz 以下和 24GHz 以上两种,而目前的 5G 技术实验以 28GHz 为主。由于当电磁波频率较高、波长较短 时,易于传播介质中衰减,因此对天线材料的要求较高。4G 时代的 PI 膜由于在 10GHz 以上损耗明显,无法满足 5G 终端的相关需求,LCP 材料则凭借其介子损耗与导体损 耗小、灵活性高、密封性好等特性逐步得到应用。但目前 LCP 造价较高、工艺复杂, MPI 有望成为 5G 时代初期天线材料的主流选择之一。中国 LCP 材料产能较小,进口依赖严重。从 LCP 研发进程、产能分布以及产品特点 等方面综合判断,现阶段日本 LCP 产业综合实力更强。沃特股份(002886)自 2014 年收购三星精密的全部 LCP 业务后,成为了全球唯一可以连续生产 3 个型号 LCP 树 脂及复材的企业,目前产能 3000 吨/年。但其余中国 LCP 生产企业产能均较小。LCP 材料应用广泛,下游需求稳步提升。LCP 在电子电器领域,可应用于高密度连接 器、线圈架、线轴、基片载体、电容器外壳等;汽车工业领域,可用于汽车燃烧系统 元件、燃烧泵、隔热部件、精密元件、电子元件等;雷达天线屏蔽罩、耐高温耐辐射 壳体等领域。据前瞻产业研究院统计,2018 年 LCP 材料全球需求为 7 万吨,预计 2020 年将达到 7.8 万吨,随着 5G 应用的逐步推广,LCP 市场将持续稳步增长。2.1.5 3D玻璃手机后盖去金属化大势所趋,3D 玻璃迎发展契机。由于 5G 采用的大规模 MIMO 技术 需要在手机中新增专用天线,传统的金属后盖会对信号产生屏蔽及干扰,后盖材料去 金属化大势所趋。目前主流的材料为玻璃、陶瓷和塑料,但普通的“注塑+喷涂”的 技术无法满足 5G 时代的相关要求,未来的发展趋势是从质感到体验都向金属和玻璃 逐步靠近。3D 玻璃作为手机外壳材料具有轻薄、透明洁净、抗指纹、防眩光、耐候性佳的优点。 目前主流品牌的高端机型大多采用 3D 玻璃作为前后盖材质。3D 玻璃市场逐步渗透,未来市场广阔。据前瞻产业研究院统计,2015-2017 年我国 3D 玻璃市场规模从 7.4 亿元增长至 48.9 亿元,年均复合增长率高达 156.35%。但目 前,3D 玻璃价格较高、技术不成熟、产能存在不足,3D 玻璃应用有限。随着 3D 玻璃 技术的升级和量产的实现,3D 玻璃有望在 3C 产品尤其是智能手机中得到大规模的应 用。到 2023 年,预计 3D 玻璃行业市场规模有望超 280 亿元,较 2017 年增长近 5 倍。2.2 半导体材料半导体材料是产业基石,国产替代迫在眉睫。由于半导体材料领域中高端产品技术壁 垒高,目前市场主要被美、日、欧、韩、中国台湾地区等少数国际大公司垄断。我国 半导体材料在国际分工中处于低端地位,大部分产品自给率较低,主要依赖于进口, 半导体材料关乎产业安全,国产替代迫在眉睫。2.2.1 大硅片硅片也称硅晶圆,是制造半导体芯片最重要的基本材料。硅片直径越大,能刻制的集 成电路越多,芯片的成本越低。大尺寸硅片对技术要求高,进入壁垒极高,市场呈寡 头垄断的竞争格局。目前中国大陆自主生产的硅片以 6 英寸(150mm)为主,主要应 用领域仍然是光伏和低端分立器件制造,8 英寸(200mm)和 12 英寸(300mm)的大 尺寸集成电路级硅片进口依赖严重。12 英寸硅片为先进制程的主流方案。制程 20nm 以下的芯片性能强劲,主要用于移动 设备、高性能计算等领域,包括智能手机主芯片、计算机 CPU、GPU、高性能 FPGA、 ASIC 等。制程 14nm-32nm 的芯片则应用于 DRAM、NAND Flash 存储芯片、中低端处理 器、影像处理器、数字电视机顶盒等产品。45-90nm 中高端产品中,12 英寸也逐渐成 为首选。制程 45-90nm 的芯片主要用于性能略低,而对成本和生产效率要求高的领 域,例如手机基带、WiFi、GPS、蓝牙、NFC、ZigBee、NOR Flash、MCU 等。消费升级,终端市场持续向好,硅片需求逐步扩大,12 寸硅片市场不断渗透。8 英寸和 12 英寸硅片作为主流硅片产品,在终端市场带动下需求将持续扩大。据 SEMI 统 计,2019 年晶圆管面积出货量将达 11,810 百万平方英寸,并预计 2023 年达到 13,761 百万平方英寸,增速稳定。同时,全球 12 英寸硅片市场占比不断提高,预计 2021 年 将达到 71.20%,并有望继续扩大。2.2.2 光刻胶光刻胶是微电子技术中微细图形加工的重要关键材料,国内光刻胶自给率较低。光 刻胶成本约占整个芯片制造工艺的 30%,耗费时间约占整个芯片制造工艺的 40%-60%, 是半导体制造中最核心的工艺。目前国内光刻胶自给率仅 10%,主要集中于技术含量 相对较低的 PCB 领域。G 线、I 线光刻胶的自给率约为 20%,KrF 光刻胶的自给率不 足 5%,12 寸硅片的 ArF 光刻胶目前尚无国内企业可以大规模生产。中国光刻胶集中 PCB 领域,高技术光刻胶市场份额低。从全球市场来看,LCD 光刻胶 占比较高,为 26.6%,但中国光刻胶市场集中于技术水平较低的 PCB 领域,占比达 94.4%,LCD 光刻胶和半导体光刻胶所占份额非常低。全球光刻胶市场预计可达 20 亿美元,国内市场广阔。2017 年,从全球区域市场来看, 中国半导体光刻胶市场规模占全球比重最大,达到 32%。其次是美洲地区,其光刻胶 市场规模占全球比重为 21%。据前瞻产业研究院统计,2017 年全球半导体光刻胶市场 规模达到 12 亿美元,预期未来市场加速扩张,2023 年可达 20 亿美元2.2.3 电子特种气体电子气体是指用于半导体及相关电子产品生产的特种气体,被广泛应用于国防军事、 航空航天、新型太阳能电池、电子产品等领域,是电子工业体系的核心关键原材料之 一。其行业技术壁垒在于从生产到分离提纯以及运输供应阶段,一直受到欧美发达国 家的技术封锁,并且行业集中度高,美国气体化工、美国普莱克斯、法国液化空气、 日本大阳日酸株式会社和德国林德集团五家公司垄断全球特种气体 91%的市场份额, 国内相关企业主要集中在中低端市场。下游行业快速发展,电子特气市场规模稳步提升。据中国半导体行业协会统计,2010- 2018 年电子特种气体行业市场规模高速增长,2018 年达到 121.56 亿元,同比增长 16.1%,预计 2019 年市场规模达到 152 亿元。同时,随着国内晶圆厂陆续投产,电子 气体需求有望继续增加,预计 2025 年集成电路对特种电子气体需求将达到 134 亿元。2.2.4 高纯溅射靶材高纯溅射靶材是集成电路制造过程中的关键材料。高纯溅射靶材主要是指纯度为 99.9%-99.9999%的金属或非金属靶材,应用于电子元器件制造的物理气象沉积工艺, 是制备晶圆、面板、太阳能电池等表面电子薄膜的关键材料。根据应用领域不同,可 将其分为半导体靶材、面板靶材、光伏靶材等。高纯溅射靶材技术门槛高、设备投资 大,行业集中度较高,前五大厂商占比合计超过 80%,主要分布于美、日等国家。下游行业持续放量,半导体靶材市场规模不断扩张。半导体芯片的金属溅射靶的作用 是制造金属线,将信息传输到芯片。据 SEMI 统计,溅射靶材占半导体密封材料市场 的 2.7%左右。2019 年全球溅射靶材市场规模为 163 亿美元,预计 2020 年将达到 190 亿美元;中国半导体用靶材市场规模为 47.7 亿元,预计 2022 年将达到 75.1 亿元。2.2.5 化学机械抛光材料化学机械抛光(CMP)是集成电路制造过程中实现晶圆全局均匀平坦化的关键工艺。抛光材料是 CMP 工艺过程中必不可少的耗材,但是技术壁垒高且客户认证时间长,一 直以来处于寡头垄断的格局。根据功能的不同,抛光材料可划分为抛光垫、抛光液、 调节器、以及清洁剂等,其中抛光液占据 49%的市场份额,抛光垫占据了 33%的市场 份额。全球芯片抛光液市场主要被美国、日本、韩国等企业垄断,占全球高端市场份 额 90%以上。CMP 抛光垫方面,陶氏杜邦占 79%的市场份额。中国抛光材料市场发展迅速,未来可期。2019 年,全球抛光垫和抛光液的市场规模 分别为 7 亿美元和 12 亿美元,较去年同期有所增长。中国 CMP 抛光液市场销售规模 增长迅速,从 2014 年的 12.1 亿元增长到 2018 年的 17.7 亿元,年复合增长率为 10.0%,预计 2023 年市场规模将达到 24.4 亿元。CMP 抛光垫过去五年年复合增长率 为 9.7%,2018 年市场规模为 10.3 亿元,预计 2023 年市场规模达到 14.3 亿元。CMP 抛光步骤不断增加,CMP 材料需求有望继续突破。由于工艺制程和技术节点不同, 每片晶圆在生产过程中都会经历几道甚至几十道 CMP 抛光工艺。随着未来芯片尺寸 不断减小的趋势,抛光的步骤将不断增加,相关需求也将不断增加,未来的发展潜力 巨大。2.2.6 碳化硅和氮化镓第三代半导体核心材料—碳化硅和氮化镓。第一代半导体材料主要用于分立器件和 芯片制造;第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件, 也是制作高性能微波、毫米波器件的优良材料,广泛应用在微波通信、光通信、卫星 通信、光电器件、激光器和卫星导航等领域;第三代半导体材料广泛用于制作高温、 高频、大功率和抗辐射电子器件,应用于半导体照明、5G 通信、卫星通信、光通信、 电力电子、航空航天等领域。氮化镓(GaN)和碳化硅(SiC)是第三代半导体材料较 为成熟、最具有发展前景的两种材料。第三代半导体投资热度较高。据 CASA 统计,2019 年 SiC 投资 14 起,金额 220.8 亿 元,GaN 投资 3 起,金额 45 亿元,较去年同比增加 60%。根据赛瑞研究显示,2017 年全球 SiC 功率半导体市场规模为 3.02 亿美元,预计 2023 年达到 13.99 亿美元,GAGR 为 29%;2017 年全球射频 GaN 市场规模为 3.8 亿美元, 预计 2023 年达到 13 亿美元,CAGR 为 22.9%。2.2.7 先进封装封装技术地位重要,创新技术不断出现。封装技术伴随集成电路发明应运而生,主要 功能是完成电源分配、信号分配、散热和保护。随着芯片技术的发展,封装技术不断 革新。封装互连密度不断提高,封装厚度不断减小,三维封装、系统封装手段不断演 进。随着集成电路应用多元化,智能手机、物联网、汽车电子、高性能计算、5G、人 工智能等新兴领域对先进封装提出更高要求,封装技术发展迅速,创新技术不断出现。市场发展未来可期,产业发展三足鼎立。受5G 与电子产品的相关影响,2019 年全球 封测市场规模达 566 亿美元,同比增长约 1%,随着下游应用的不断放量,封测行业 市场有望迎来高增长。目前全球封测产业的主要地区为中国台湾、美国、中国大陆。 中国台湾是全球芯片封测代工实力最强的区域,占据一半以上市场份额;美国由于众 多 IDM 龙头企业用自己的封测部门,因此也是全球封测产业的重要参与者。中国封测行业发展迅速。中国大陆近年来积极推进半导体产业发展,封测行业发展迅 速,通过自主研发先进封装和海外并购整合,中国大陆封测市场迅速壮大,份额位居 全球第二。2019 年中国封测市场规模约 359 亿美元,同比增长约 15%,随着 5G 的进 一步推广,未来需求有望继续增加。2.3 面板材料显示技术广泛应用于电视、笔记本电脑、平板电脑、手机等电子产品,在信息产业发 展过程中发挥了重要作用。显示技术从 20 世纪 50 年代的阴极射线管显示技术(CRT) 发展到二十世纪初的平板显示技术(FPD),平板显示技术又分支出离子显示(PDP)、 液晶显示(LCD)、有机发光二极管显示(OLED)等技术路线。相比于阴极显像管技术, 平板显示具有节能环保、低辐射、重量轻、厚度薄、体积小等优点。目前,平板显示 技术的主流产品为薄膜晶体管液晶显示(TFT-LCD)面板和 OLED 面板,前者主要应用 于笔记本电脑、显示器以及电视等领域,后者应用与显示照明领域。LCD 在大尺寸屏幕产品中处主导地位,大尺寸化趋势是促进液晶面板行业发展的主要 动力,而 OLED 技术作为新型显示技术,在小尺寸平板显示中广泛应用。商业化趋势加速,OLED 市场规模逐年增加。近年,OLED 显示的商业化应用趋势开始 逐步体现,AMOLED 显示面板的主要终端应用领域为手机和电视产品,市场规模不断 扩大,渗透率不断提高。2018 年 OLED 产值规模已达 131.1 亿美元,市场规模 9.6 亿 元,预计 2025 年市场规模将达到 47.1 亿元。随着 LCD 和 OLED 下游需求的不断放量,液晶材料、偏光片、OLED 发光材料等同产业 链产品需求持续增加,市场规模有望进一步扩大。2.3.1 液晶材料液晶材料是 LCD 的关键材料之一,直接影响着液晶显示整机的时间、视角、亮度、 分辨率、使用温度等性能。近年来,全球液晶面板产能逐渐由日韩及中国台湾地区转 向中国大陆,国内混合液晶需求量快速增长。同时,TFT-LCD 面板出货面积的不断增 加也将推动上游混合液晶材料市场需求的增长。受益于国内龙头企业市场份额的快速增长,混合液晶国产替代空间巨大。IHS 数据显 示,2019 年混合液晶的全球需求量约为 780.5 吨,2023 年将达到 871.5 吨,2019- 2021 年国内混晶需求量分别为 410 吨、510 吨和 590 吨,年均增速超过 20%,市场空 间较大。2.3.2 玻璃基板玻璃基板是平板显示产业的关键基础材料之一。玻璃基板是一种表面极其平整的薄 玻璃片,与面板的分辨率、透光率、重量、厚度、可视角度等指标密切相关,成本约占整个显示面板产品成本的 20%。玻璃基板行业是液晶显示面板上游的核心原材料器 件,技术壁垒较高,行业主要被美国和日本企业垄断。消费电子市场广阔,玻璃基板发展动力十足。2019 年我国玻璃基板市场规模为 203.09 亿元,其中电视面板领域市场为 141.54 亿元,占比 69.69%;电脑、笔记本及其他大 尺寸面板领域为 38.1 亿元,占比 18.76%;手机及其他小尺寸面板领域玻璃基板规模 为 23.45 亿元,占比 11.55%。我国是全球最大的消费电子生产国和消费国,随着消 费电子市场的不断增长,玻璃基板的需求快速扩张,预计 2019 年达到 32,324 万平 方米,2014-2019 年复合增长率 28.75%。2.3.3 偏光片偏光片是一种复合材料,可实现液晶显示高亮度、高对比度的特性,是液晶面板的三 大关键原材料之一。LCD 模组中需要两张偏光片,分别位于玻璃基板两侧,缺少任何 一张偏光片都无法显示画面。偏光片产业链上游主要包含 PVA、TAC 等原材料,中游 为偏光片生产,下游为显示面板及太阳眼镜、护目镜、摄影设备等终端产品。大陆面板产业的快速发展,政策利好拉动偏光片厂商加大研发投入、促进产能规模 扩张。2018 年的全球偏光片产能规模约为 7.27 亿平米,整体产能扩张趋于平稳,预 计未来五年内偏光片市场供需将保持 4%的增速稳步增长,2020 年全球偏光片市场规 模将达到 132.5 亿美元。2018 年国内偏光片市场规模为 42 亿美元,占全球市场份额 34.1%,预计 2020 年国内偏光片市场规模可达 53.2 亿美元,占全球市场份额达 40.2%。偏光片原材料成本占总成本的 70%以上,其中 TAC 膜、PVA 膜分别占材料成本的 56% 和 16%左右,是偏光片生产过程中最重要的部分。PVA 膜起到偏振的作用,是偏光片 的核心部分,决定了偏光片的偏光性能、透过率、色调等关键光学指标。TAC 膜一方 面作为 PVA 膜的支撑体,保证延伸的 PVA 膜不会回缩,另一方面保护 PVA 膜不受水 汽、紫外线及其他外界物质的损害,保证偏光片的环境耐候性。2.3.4 OLED发光材料OLED发光材料是OLED显示面板的关键材料,是OLED产业链中技术壁垒最高的领域。OLED 材料主要包括发光材料和基础材料两部分,发光材料主要包括红光主体/客体 材料、绿光主体/客体材料、蓝光主体/客体材料等。目前,OLED 发光材料具有较 高的专利壁垒,核心技术被韩日德美企业所掌控,国内企业主要从事 OLED 中间体和 单体粗品生产。其中,绿光材料的主要供应商为三星 SDI、默克公司;红光材料的主 要供应商为陶氏化学;蓝光材料主要由出光兴产供应。2019 年 OLED 发光材料市场规 模为 13.4 亿美元,预计 2020 年将达到 19 亿美元,市场增长迅速,未来发展可期。2.3.5 精细金属掩模版精细金属掩膜版(Fine Metal Mask,简称 FMM)是 OLED 蒸镀工艺中的消耗性核心零 部件。FMM 的主要作用是在 OLED 生产过程中沉积 RGB 有机物质并形成像素,通过准 确和精细地沉积有机物质提高分辨率和良率。制造高精度 FMM,需要 INVAR 等更高级 的合金。现在市面上唯一能提供满足 FMM 使用要求的合金厂商是 Hitachi Metals, 国内 FMM 材料处于初始研发阶段,尚不具备量产条件。FMM 供应商数量有限,技术壁垒较高。HIS 数据显示,2017 年 FMM 市场将产生 2.3 亿 美元收入,2022 年达到 12 亿美元,年复合年增长率为 38%。当前领先的制造商为大 日本印刷株式会社,绝大多数的 AMOLED 显示屏均使用其 FMM 掩膜。2.4 高分子新材料2.4.1 生物可降解塑料“限速”升级,可降解塑料市场增长未来可期。可降解塑料也称为可环境降解塑料, 是指在保存期内性能不变,而后在自然环境条件下可降解且对环境无害的塑料。可降 解塑料可应用于农用地膜、垃圾袋、各类塑料包装袋、商场购物袋和一次性餐饮具等。 近年来,“限塑令”等政策的落地实施,生物可降解塑料迎来重大发展机遇,市场发 展空间较大。2018 年全球可降解塑料需求量约为 36 万吨,近五年年复合增速约 5.0%。2.4.2 胶粘剂应用领域不断拓宽,市场空间无限。胶粘剂以粘料为主剂,配合各种固化剂、增塑剂 和填料等助剂配制,能够把各种材料紧密结合在一起。胶粘剂用途广泛,近年来,我 国胶粘剂应用领域已从木材加工、建筑和包装等行业,扩展到服装、轻工、机械制造、 航天航空、电子电器、交通运输、医疗卫生、邮电、仓贮等众多领域。商标、标签和 广告贴的广泛使用进一步加快了胶粘剂品种的发展,汽车业、电子电器业、制鞋业、建筑业、食品包装业的用胶量增长快速。用途广泛,胶粘剂市场规模不断扩大。2019 年,全球胶粘剂市场规模达到 487 亿美 元,同比增长 7.5%,预计到 2020 年,胶粘剂市场规模将超过 520 亿美元,2016-2020 年复合增长率约为 6.9%。其中中国胶粘剂市场仍将保持良好的增长态势,预计 2020 年,中国胶粘剂市场规模将达 1200 亿元。2.4.3 有机硅性能优异,有机硅应用广泛。有机硅聚合物兼备了无机材料和有机材料的性能,具有 耐高低温、抗氧化、耐辐射、介电性能好、难燃、憎水、脱膜、温粘系数小、无毒无 味以及生理惰性等优异性能,广泛运用于电子电气、建筑、化工、纺织、轻工、医疗 等领域。有机硅聚合产品既可以作为基础材料,又可以作为功能性材料添加入其它材 料而改善其性能,素有“工业味精”之美称。有机硅产品按其用途或所处产品链的位置可分为上游产品和下游产品两大类。上游产品包括氯硅烷单体和初级聚硅氧烷中 间体;下游产品则主要是以初级聚硅氧烷中间体为原料经深加工而获得有机硅产品 及制品。全球市场稳步增加,产能增长主要源自中国。2008-2018 年全球聚硅氧烷产能从 150.2 万吨/年增加至 254.8 万吨/年,产量从 113.3 万吨增加至 210.0 万吨,预计 2023 年 全球聚硅氧烷总产能将达到 309.2 万吨/年,产量达 268.0 万吨。近十年,有机硅产 能向中国转移趋势明显,我国已成为有机硅生产和消费大国,产品优势愈加明显,进 口替代效应显著。2.5 高性能纤维2.5.1 超高分子量聚乙烯纤维地区冲突拉动超高分子量聚乙烯纤维需求不断增长。超高分子量聚(UHMWPE)纤维,是 由相对分子质量在 100 万-500 万的聚乙烯所纺出的纤维。近年来,世界各地冲突加 剧、国家安全意识提升,军事装备、安全防护等行业增加了对高强度、高性能等超高 分子量聚乙烯产品的需求。据前瞻产业研究院统计,未来 2-5 年,UHMWPE 年需求量 将稳定在 10 万吨以上,总需求预计达到 68.3 万吨。后发先至,中国超高分子量聚乙烯纤维产业发展迅速。我国超高分子量聚乙烯纤维起 步较晚,但发展迅速,2019 年我国超高分子量聚乙烯纤维行业总产能约 4.1 万吨, 占全球总产能的 60%以上。2.5.2 碳纤维碳纤维优点显著,下游应用领域众多。碳纤维(Carbon Fiber,简称 CF)是由有机 纤维(粘胶基、沥青基、聚丙烯腈基纤维等)在高温环境下裂解碳化形成碳主链机构 的无机纤维,是一种含碳量高于 90%的无机纤维。碳纤维具有目前其他任何材料无可 比拟的高比强度(强度比密度)和高比刚度(模量比密度),还具有低比重、耐腐蚀、 耐疲劳、耐高温、膨胀系数小等特性,被誉为“新材料之王”,广泛应用于国防工业 以及高性能民用领域,主要包括航空航天、海洋工程、新能源装备、工程机械、交通 设施等,是一种国家亟需、应用前景广阔的战略性新材料。三种碳纤维在性能上各有所长。碳纤维具有高强度、高模量、低密度、耐高温等一系 列优异的性能,三种原丝制造的碳纤维具有一定的通性,但在具体的性能上各有所长。碳纤维的需求量稳定增长,近年呈加速趋势。2008 年全球碳纤维需求量 36.4 千吨, 2018 年达到 92.6 千吨,十年间的平均增长率为 9.8%,且近年来增长率有所提升, 2015-2018 年间的增长率分别为 28%、15%、7%、10%,平均而言高于此前的增长率。 若按每年 10%的增长率计算,预计 2019 与 2020 年全球碳纤维的需求量将分别达到 101.9 与 112.1 千吨。国内碳纤维的需求以加速趋势增长。2018 年国内碳纤维需求达到 31 千吨,占全球碳 纤维需求的 33.48%,对比 2017 年的 23.5 千吨,增速达到 32%,同期全球碳纤维需求 的增长率约为 10%。2008-2018 十年间,国内碳纤维的需求量从 8.2 千吨增长至 31 千 吨,年均增长率达到 14.22%,高于 9.8%的世界平均增长率;自 2015 年以来,国内碳 纤维需求的增长率始终维持在较高水平,并有加速上升的趋势。若按 14%的增长率计 算,预计到 2020 年,国内碳纤维的需求将达到 40.29 千吨。2.5.3 对位芳纶对位芳纶性能优异,民用、军用领域应用较广。对位芳纶的强度是钢的 3 倍、强度较 高的涤纶工业丝的 4 倍;初始模量是涤纶工业丝的 4-10 倍、聚酰胺纤维的 10 倍以 上。对位芳纶稳定性高,在 150℃下收缩率为零,在高温下仍能保持较高的强度,如 在 260℃温度下仍可保持原强度的 65%。对位芳纶应用领域包括防护服装(主要为防 弹装备)、航空航天、汽车工业、光缆增强等,间位芳纶应用领域包括防护服装(主 要为阻燃装备)、工业过滤、工业制毡、汽车工业等。生产条件严苛,垄断严重。生产可供使用的、性能优良的高分子芳纶纤维缩聚物的条 件较为严苛,对仪器设备要求较高,因此鲜有企业具备大量产业化生产能力。由于芳纶材料技术壁垒高、研发周期长的特点,世界芳纶产业集中程度较高,全球芳纶产业 几乎由美国杜邦、日本帝人、中国泰和新材、韩国可隆四家公司垄断。对位芳纶产能不足,进口依赖程度高。国内对位芳纶需求量为约 1 万吨,而实际产能 仅仅 2000 吨,进口依存度约为 87%,对位芳纶需求缺口大,进口依赖严重。单兵防 护装备、航空航天领域等国防领域的需求较高,且暂无较好替代材料,目前我国对位 芳纶产能不足,性能也未达到最优。2.6 其他前沿新材料2.6.1 新能源汽车新能源汽车发展迅速,中国市场领跑全球。新能源汽车的产业链主要由电池、电机和 电控三部分构成。其中锂动力电池主要由电芯、BMS 和 Pack 组成,燃料电池由电堆 和系统配件组成,电机由定子、转子和机械结构构成。据 Markline 统计,2020 年上 半年全球新能源乘用车(BEV+PHEV)销量为 97.4 万辆,其中中国、美国、欧盟、日 本、其它国家分别销售 31.3、11.0、32.4、1.2、17.5 万辆,对应分别占比 33.5%、 11.8%、34.7%、1.3%、18.8%。2.6.2 离子液体优势明显,下游应用众多。离子液体又称室温离子液体、室温熔融盐或有机离子液体 等,是由有机阳离子和无机阴离子组成,在 100℃以下呈液体状态的盐类。离子液体 无味、不支持燃烧、蒸汽压小且很难挥发、易回收,在工业使用中无有害气体产生, 是传统有机溶剂的良好替代品,与传统常规溶剂相比,在热稳定性、导电性方面具有 独特的优势。离子液体目前广泛应用于溶剂,电解质,显示器,分析仪器,润滑剂, 塑料,电化学行业等领域。Graphical Research 预计,2017 年全球离子液体需求达 1.5 万吨,预计到 2024 年需求将达到 6.5 万吨,复合增长率达到 23.3%,市场规模 达到 25 亿美元。2.6.3 富勒烯应用广泛,未来市场广阔。富勒烯具有完美的对称结构,在纳米尺度范围内有特殊的 稳定性和奇异的电子结构,在许多高新技术领域应用潜力巨大,因此被称为“纳米王 子”。受成本与技术因素限制,目前富勒烯应用仍处于起步阶段。富勒烯具有硬度高、 稳定性好、超导性等诸多特性,在电子、生物医药、超导、能源、工业催化等领域具 有极大的应用潜力。2006 年到 2018 年间,全球富勒烯市场规模都在以年均 70%左右的速度增长,预计 2018 年市场规模达到 136 亿美元。3、政策支持,新材料发展动力十足为了提升我国新材料的基础支撑能力,实现我国从材料大国到材料强国的转变,我国 先后颁发《关键材料升级换代工程实施方案》、《中国制造2025》、《“十三五”国家战 略性新兴产业发展规划》等一系列纲领性文件与指导性文件。具体从战略材料、先进 基础材料和前沿新材料三个重点方向展开。其中先进基础材料包括,先进钢铁材料、 先进有色金属材料、先进化工材料等;关键战略材料包括,高端装备用特种合金、高 性能分离膜材料、高性能纤维及复合材料等;前沿新材料包括,石墨烯、金属及高分 子增材制造材料、形状记忆合金、自修复材料等。根据对国家政策的相关梳理,根据我国对新材料支持力度的不同,我们可以将新材料 划分为重点突破的新材料,主要包括高端装备用特种合金、高性能结构材料、航空航 天、新能源汽车材料、生物医药、节能环保材料等;加快研发的新材料,包括先进钢 铁材料、先进有色金属新材料、先进化工材料、先进建筑材料等;提前布局的新材料, 包括石墨烯、形态记忆合金、自修复材料、智能与仿生超材料等;结合我国在新材料 领域的特色资源优势,积极发展稀土、钨钼、钒钛、锂、石墨等新材料。4、产业周期创造新材料发展新机遇领域发展成熟,成长期与成熟期新材料潜力巨大。新材料应用广泛,但由于新材料是 基于理念、技术和设备等领域创新后的产品,因此一个新材料从概念提出到发展成熟 往往需要一定的周期。新材料产业按产品周期可以分为导入期、成长期、成熟期和衰 退期,新材料所处周期不同,对应的业务规模和发展规划也存在差异。对于导入期新 材料,相关概念刚刚提出,技术发展尚不成熟;成长期新材料相关产品出现分化,技 术工艺迅速发展;成熟期新材料市场发展开始兑现,产能产量处于高位;衰退期新材 料开始逐步退出市场。从产业周期角度,最具发展潜力的为处于成长期于成熟期的新 材料。 导入期:加强产品创新,进行市场培育。导入期产品属于高风险高收益产品类别。 处于导入期的产品,一般市场容量较小、市场渗透率较低;此外,公司的生产规 模一般较小且生产成本高,并且由于技术的不确定性,产品质量难以保证。但是 该市场产品毛利率高,盈利能力强,具有技术优势的公司会领先市场获得巨大收 益。概念提出期,相关领域研究刚刚起步。进军导入期公司的相关要求较高,需要具 备强大的技术研发能力、该领域资深的研究经验、政策的扶持和新兴市场的需求。 此外,该领域新材料技术尚不成熟,市场较小、需求不大。该领域的典型材料包 括:石墨烯、超材料纳米功能材料、记忆合金和关键战略材料等。 成长期:重视工艺创新,改进产品质量,创立企业品牌。进入成长期的产品市场 容量逐步扩大,市场渗透率逐步提高,产品由于技术趋于稳定,产品质量的逐渐 标准化,质量得到有效的改善,且产品成本逐步降低。因此在该阶段,具有较高 产品质量和品牌效应的公司会获得较大的收益。技术、市场成长期,新材料应用增多,市场规模逐渐增加。成长期新材料相关技 术工艺开始逐步成熟,成本开始下降,市场应用逐渐增多,下游需求开始发力, 具有较好的成长性。产品处于成长期的公司除了重视研发外,要注重对于市场的 开发,进行生产工艺创新、提升产品质量、增加产品品种、创立自身品牌并建立 相应的销售网络。该领域的典型材料包括:钛合金、半导体材料等。 成熟期:市场趋于饱和,降低成本,加快产品升级。成熟期的产品技术稳定、质 量稳定且产品差异较小,市场接近饱和。公司应当通过资本密集化、规模效应等 来降低产品成品和提高产品质量,倒逼产品升级。市场兑付期,新材料行业认可度高,使用广泛,下游需求旺盛。成熟期新材料市 场应用较广,终端产品对该新材料粘性较高,市场规模与需求较大。处于成熟期 的公司应当在对原产品成本、质量优化的同时,进行产业链的整合,同时延伸产 业链外延,拓宽新的业务链并推动技术的不断升级。该领域的典型材料包括:3D 打印、锂电池材料、特种橡胶等。 衰退期:新产品逐渐替代,市场逐步缩小。由于生产能力的过剩和规模的不断 缩小,衰退期产品的成本不断增加,并且新产品开始对旧产品产生替代效应, 市场空间逐渐缩小。新材料退出期,该材料性能不再具有优势,市场规模开始缩减。处于衰退期的 公司应当尽量缩减生产能力、减少开支并逐步缩小市场。该领域的典型材料包 括:多晶硅和稀土荧光材料。……(报告观点属于原作者,仅供参考。报告来源:万联证券)如需完整报告请登录【未来智库官网】。

玻璃屋

预计到2028年,3D打印纳米材料的市场将到达10.4亿美元

二十多年来,纳米材料已经证明在电子,医疗保健和消费品等多种领域非常有用。目前使用的纳米材料包括纳米颗粒形式的常规材料和完全新颖的纳米材料,例如碳纳米管。3D打印纳米材料和纳米结构的活动已持续多年,但领先的行业分析公司SmarTech认为,3D打印纳米材料的商机将随着主要应用的需求以及3D打印部门探索和商业化新的需求而扩大。在2018年11月20日,SmarTech发布了一份“ 3D打印纳米材料的新兴机会 ”的报告,在本报告中,SmarTech分析了3D打印纳米材料市场未来十年的演变情况,并包括最终用户应用和纳米材料类型的十年收入预测。该报告还讨论了哪种3D打印工艺最适合纳米材料以及为3D打印提供最大商业潜力的纳米材料类型。据SmarTech称,到2024年,使用纳米材料的3D打印零件和原型将达到1.26亿美元,到2028年将达到10.4亿美元。到2028年,SmarTech预计近60%的3D打印纳米材料活动将来自电子产品和医疗部门。除了这些行业,SmarTech的3D打印纳米材料报告还提供了牙科,智能纺织品和软机器人,能源存储,航空航天和汽车领域的3D打印纳米材料的报道。在报告涵盖的长达十年的预测期内,SmarTech认为3D打印材料将成为3D打印的主流,即使在小型机器上也是如此。SmarTech的Gasman指出,纳米材料的3D打印已有非常小的迹象,吸引了专业圈外的兴趣。他指出,惠普和汉高已经投资了Copprint,后者正在开发一种可打印3D的墨水。此外,这家纳米结构钢铁公司Nanosteel最近开始生产其3D打印材料集团,并以不明数量筹集了A系列资金。在接下来的路上,Gasman希望看到一些最大的3D打印机OEM和3D材料公司坐下来注意3D打印材料所代表的机会。【免责声明】文章内容或图片来源于网上,如涉及到版权等问题,敬请来信联系我们。我们收到信息,核实后立即删除处理,谢谢!

高手们

2019年中国新材料产业现状分析及发展前景预测

中商情报网讯:新材料是指新近发展或正在发展的具有优异性能的结构材料和有特殊性质的功能材料。结构材料主要是利用它们的强度、韧性、硬度、弹性等机械性能。如新型陶瓷材料,非晶态合金等。功能材料主要是利用其所具有的电、光、声、磁、热等功能和物理效应。近几年,世界上研究、发展的新材料主要有新金属材料,精细陶瓷和光纤等。新材料的类型按材料的性质分,新材料可分为结构新材料(以软科学性能为主要性能的材料)和功能新材料(以物理性能为主要性能的材料)两大类。按基本组成分,新材料主要可分为新型金属材料、新型无机非金属材料、新型高分子材料和先进复合材料四大类。根据用途分,新材料又可分为能源新材料、信息新材料、磁性新材料、航航天新材料、生物医用新材料、化工新材料、超硬难熔材料、保温材料、纳米料、高温超导材料、新型建筑材料、新型有色金属合金材料、新型照明材料、新型生态材料等等。资料来源:中商产业研究院整理政策助力新材料行业发展我国高度重视新材料产业发展,目前通过纲领性文件、指导性文件、规划发展目标与任务等构筑起新材料发展政策金字塔,予以全产业链、全方位的指导。其中纲领文件主要为《中国制造2025》,指导性文件包括《中国制造2025》重点领域技术路线图、《新材料产业发展指南》,发展任务与目标相关文件包括《“十三五”国家战略性新兴产业发展规划》、《有色金属行业发展规划(2016-2020年)》、《稀土行业发展规划(2016-2020年)》等。新材料产业规模不断扩增新材料作为国民经济先导产业和高端制造及国防工业的重要保障,未来将成为各国战略竞争的焦点。当前在新一轮科技革命和产业变革大势下,全球新材料产业格局发生重大调整。新材料与信息、能源、生物等高技术加速融合,互联网+、材料基因组计划、增材制造等新技术新模式蓬勃兴起,新材料创新步伐持续加快,国际竞争日趋激烈。近年来,我国新材料产业发展十分迅速,据数据显示,2018年中国新材料产业产值近4万亿元。数据来源:中商产业研究院新材料产业三大产业集群目前,我国新材料产业逐渐形成集群式发展模式,形成以环渤海、长三角、珠三角为重点,东北、中西部特色突出的产业集群分布。环渤海、长三角和珠三角地区作为目前国内三大综合性新材料产业聚集区,企业分布密集,高校及科研院所众多,并拥有资金、市场等优势,新材料产业的高端要素向这些区域聚集。新材料产业发展前景随着科技的发展,新材料的应用领域与日俱增,除了广泛应用于航空航天等高技术领域,还可用在文体用品、纺织机械、医疗器械、生物工程、建筑材料、化工机械、运输车辆等方面。可以预计,随着新能源等行业的快速发展,中国新材料需求将呈现持续增长的趋势发展,到2025年其产值将突破10万亿元,发展前景十分广阔。随着新材料产业技术的不断发展,未来,我国新材料产业将向结构功能复合化;功能材料智能化;材料与器件集成化,制备和使用过程绿色化方向发展。更多资料请参考中商产业研究院发布的《2019-2025年中国新材料产业园投资机会研究报告》,http://wk.askci.com/details/64c3b9d5160d44ca854be7d9f0e0ac1b/同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

罗汉村

2019年中国新材料产业现状分析及发展前景预测(图)

中商情报网讯:新材料是指新近发展或正在发展的具有优异性能的结构材料和有特殊性质的功能材料。结构材料主要是利用它们的强度、韧性、硬度、弹性等机械性能。如新型陶瓷材料,非晶态合金等。功能材料主要是利用其所具有的电、光、声、磁、热等功能和物理效应。近几年,世界上研究、发展的新材料主要有新金属材料,精细陶瓷和光纤等。新材料的类型按材料的性质分,新材料可分为结构新材料(以软科学性能为主要性能的材料)和功能新材料(以物理性能为主要性能的材料)两大类。按基本组成分,新材料主要可分为新型金属材料、新型无机非金属材料、新型高分子材料和先进复合材料四大类。根据用途分,新材料又可分为能源新材料、信息新材料、磁性新材料、航航天新材料、生物医用新材料、化工新材料、超硬难熔材料、保温材料、纳米料、高温超导材料、新型建筑材料、新型有色金属合金材料、新型照明材料、新型生态材料等等。资料来源:中商产业研究院整理政策助力新材料行业发展我国高度重视新材料产业发展,目前通过纲领性文件、指导性文件、规划发展目标与任务等构筑起新材料发展政策金字塔,予以全产业链、全方位的指导。其中纲领文件主要为《中国制造2025》,指导性文件包括《中国制造2025》重点领域技术路线图、《新材料产业发展指南》,发展任务与目标相关文件包括《“十三五”国家战略性新兴产业发展规划》、《有色金属行业发展规划(2016-2020年)》、《稀土行业发展规划(2016-2020年)》等。资料来源:中商产业研究院整理新材料产业规模不断扩增新材料作为国民经济先导产业和高端制造及国防工业的重要保障,未来将成为各国战略竞争的焦点。当前在新一轮科技革命和产业变革大势下,全球新材料产业格局发生重大调整。新材料与信息、能源、生物等高技术加速融合,互联网+、材料基因组计划、增材制造等新技术新模式蓬勃兴起,新材料创新步伐持续加快,国际竞争日趋激烈。近年来,我国新材料产业发展十分迅速,据数据显示,2018年中国新材料产业产值近4万亿元。数据来源:中商产业研究院新材料产业三大产业集群目前,我国新材料产业逐渐形成集群式发展模式,形成以环渤海、长三角、珠三角为重点,东北、中西部特色突出的产业集群分布。环渤海、长三角和珠三角地区作为目前国内三大综合性新材料产业聚集区,企业分布密集,高校及科研院所众多,并拥有资金、市场等优势,新材料产业的高端要素向这些区域聚集。资料来源:中商产业研究院整理新材料产业发展前景随着科技的发展,新材料的应用领域与日俱增,除了广泛应用于航空航天等高技术领域,还可用在文体用品、纺织机械、医疗器械、生物工程、建筑材料、化工机械、运输车辆等方面。可以预计,随着新能源等行业的快速发展,中国新材料需求将呈现持续增长的趋势发展,到2025年其产值将突破10万亿元,发展前景十分广阔。数据来源:中商产业研究院随着新材料产业技术的不断发展,未来,我国新材料产业将向结构功能复合化;功能材料智能化;材料与器件集成化,制备和使用过程绿色化方向发展。数据来源:中商产业研究院更多资料请参考中商产业研究院发布的《2019-2025年中国新材料产业园投资机会研究报告》,http://wk.askci.com/details/64c3b9d5160d44ca854be7d9f0e0ac1b/同时中商产业研究院还提供产业大数据、产业规划策划、产业园策划规划、产业招商引资等解决方案。

夜王

半导体材料专题报告:市场空间巨大,国产替代大有所为

(如需报告请登录未来智库)国内半导体材料产业链全面盘点半导体产业链可以大致分为设备、材料、设计等上游环节、中游晶圆制造,以及下 游封装测试等三个主要环节。半导体材料是产业链上游环节中非常重要的一环, 在芯片的生产制造中起到关键性的作用。根据半导体芯片制造过程,一般可以 把半导体材料分为基体、制造、封装等三大材料,其中基体材料主要是用来制 造硅晶圆半导体或者化合物半导体,制造材料则主要是将硅晶圆或者化合物半 导体加工成芯片的过程中所需的各类材料,封装材料则是将制得的芯片封装切 割过程中所用到的材料。各个环节的材料基本都有国内企业参与供应1、基体材料根据芯片材质不同,分为硅晶圆片和化合物半导体,其中硅晶圆片的使用范围 最广,是集成电路 IC 制造过程中最为重要的原材料。硅晶圆片全部采用单晶硅 片,对硅料的纯度要求较高,一般要求硅片纯度在 99.9999999%(9N)以上, 远高于光伏级硅片纯度。先从硅料制备单晶硅柱,切割后得到单晶硅片,一般 可以按照尺寸不同分为 6-18 英寸,目前主流的尺寸是 8 英寸(200mm)和 12 英寸(300mm), 18 英寸(450mm)预计至少要到 2020 年之后才会逐渐增加 市场占比。全球龙头企业主要是信越化工、SUMCO、环球晶圆、Silitronic、LG 等企业。相关上市公司主要有:上海新阳、晶盛电机、中环股份、保利协鑫(港股)化合物半导体主要指砷化镓(GaAs)、氮化镓(GaN)和碳化硅(SiC)等第二、 第三代半导体,相比第一代单质半导体(如硅(Si)、 锗(Ge)等所形成的半导 体),在高频性能、高温性能方面优异很多。三大化合物半导体材料中,GaAs 占大头,主要用在通讯领域,全球市场容量接近百亿美元;GaN 的大功率和高 频性能更出色,主要应用于军事领域,目前市场容量不到 10 亿美元,随着成本 下降有望迎来广泛应用;SiC 主要作为高功率半导体材料,通常应用于汽车以 及工业电力电子,在大功率转换领域应用较为广泛。相关公司主要有:三安光电、海威华芯2、制造材料抛光材料半导体中的抛光材料一般是指 CMP 化学机械抛光(Chemical Mechanical Polishing)过程中用到的材料,CMP 抛光是实现晶圆全局均匀平坦化的关键工 艺。CMP 抛光的原理是是在一定压力下及抛光浆料存在下,被抛光工件相对于 抛光垫做相对运动,借助于纳米粒子的研磨作用与氧 化剂的腐蚀作用之间的有 机结合,在被研磨的工件表面形成光洁表面。抛光材料一般可以分为抛光垫、抛光液、调节器和清洁剂,其中前二者最为关 键。抛光垫的材料一般是聚氨酯或者是聚酯中加入饱和的聚氨酯,抛光液一般 是由超细固体粒子研磨剂(如纳米级二氧化硅、氧化铝粒子等)、表面活性剂、 稳定剂、氧化剂等组成。根据SEMI和IC Mtia数据,2016年全球抛光材料的市场规模大约16.1亿美元, 其中国内市场规模约 23 亿元。全球抛光垫市场几乎被陶氏垄断,抛光液市场则 主要由日本的 Fujimi 和 Hinomoto Kenmazai,美国的卡博特、杜邦、Rodel、 EKA,韩国的 ACE 等企业占领绝大多数市场份额。相关上市公司主要有:鼎龙股份(抛光垫) 、安集科技(抛光液)掩膜版掩膜版通常也被称为光罩、光掩膜、光刻掩膜版,是半导体芯片光刻过程中的 设计图形的载体,通过光刻和刻蚀,实现图形到硅晶圆片上的转移。掩膜版通 常根据需求不同,选择不同的玻璃基板,一般是选择低热膨胀系数、低钠含量、 高化学稳定性及高光穿透性等性能的石英玻璃为主流,在上面镀厚约 100nm 的 不透光铬膜和厚约 20nm 的氧化铬来减少光反射。根据 SEMI 和 IC Mtia 数据,2018 年全球半导体掩膜版的市场规模大约 33.2 亿 美元,其中国内市场规模约 59.5 亿元。全球生产掩膜版的企业主要是日本的 TOPAN、大日本印刷、HOYA、SK 电子,美国的 Photronic 等。相关上市公司主要有:菲利华、石英股份、清溢光电湿电子化学品湿电子化学品,也通常被称为超净高纯试剂,是指用在半导体制造过程中的各 种高纯化学试剂。按照用途可以被分为通用化学品和功能性化学品,其中通用化学品一般是指高纯度的纯化学溶剂,例如高纯的去离子水、氢氟酸、硫酸、 磷酸、硝酸等较为常见的试剂。在制造晶圆的过程中,主要使用高纯化学溶剂 去清洗颗粒、有机残留物、金属离子、自然氧化层等污染物。功能性化学品是 指通过复配手段达到特殊功能、满足制造过程中特殊工艺需求的配方类化学品, 例如显影液、剥离液、清洗液、刻蚀液等,经常使用在刻蚀、溅射等工艺环节。根据 SEMI 和 IC Mtia 数据,2016 年全球湿电子化学品的市场规模大约 11.1 亿 美元,其中国内市场规模约 14 亿元。全球市场主要由欧美和日本企业主导,其 中德国的巴斯夫和HenKel、美国的Ashland、APM、霍尼韦尔、ATMI、Airprocts、 日本的住友化学、宇部兴产、和光纯药、长濑产业、三菱化学等公司。相关上市公司主要有:多氟多、晶瑞股份、巨化股份、嘉化能源、滨化股份、 三美股份、江化微、澄星股份、光华科技、兴发集团电子特气电子特气是指在半导体芯片制备过程中需要使用到的各种特种气体,按照气体 的化学成分可以分为通用气体和特种气体。另外按照用途也可以分为掺杂气体、 外延用气体、离子注入气、发光二极管用气、刻蚀用气、化学气相沉积气和平 衡气。与高纯试剂类似,电子特气对气体纯度的要求也极高,基本上都要求 ppt 级别以下的杂质含量。这是因为 IC 电路的尺寸已经达到纳米级别,气体中任何 微量残存的杂质都有可能造成半导体短路或者线路损坏。根据SEMI和IC Mtia数据,2016年全球电子特气的市场规模大约36.8亿美元, 其中国内市场规模约 46 亿元。全球电子特气的龙头企业主要是美国的空气化工 和普莱克斯、法国液空、林德集团、日本大阳日酸。相关上市公司主要有:雅克科技、华特气体、南大光电、中环装备、昊华科技、 三孚股份、巨化股份光刻胶光刻胶是图形转移介质,其利用光照反应后溶解度不同将掩膜版图形转移至衬 底上。目前广泛用于光电信息产业的微细图形线路加工制作,是电子制造领域 关键材料。光刻胶一般由感光剂(光引发剂)、感光树脂、溶剂与助剂构成,其 中光引发剂是核心成分,对光刻胶的感光度、分辨率起到决定性作用。光刻胶 根据化学反应原理不同,可以分为正型光刻胶与负型光刻胶。以半导体光刻胶为例,在光刻工艺中,光刻胶被均匀涂布在衬底上,经过曝光(改 变光刻胶溶解度)、显影(利用显影液溶解改性后光刻胶的可溶部分)与刻蚀等工 艺,将掩膜版上的图形转移到衬底上,形成与掩膜版完全对应的几何图形。光 刻工艺约占整个芯片制造成本的 35%,耗时占整个芯片工艺的 40-60%,是半 导体制造中最核心的工艺。根据 SEMI 和 IC Mtia 数据,2016 年全球光刻胶的市场规模大约 14.4 亿美元, 其中国内市场规模约 20 亿元。全球光刻胶市场主要被欧美日韩台等国家和地区的企业所垄断。相关上市公司主要有:上海新阳、强力新材、苏州瑞红、南大光电、飞凯材料、 容大感光、永太科技溅射靶材溅射靶材的使用原理是利用离子源产生的离子,在高真空中经过加速聚集,而 形成高速度能的离子束流,轰击固体表面,离子和固体表面原子发生动能交换, 使固体表面的原子离开固体并沉积在基底表面,被轰击的固体是用溅射法沉积 薄膜的原材料,因此称为溅射靶材。半导体芯片的单元器件内部由衬底、绝缘层、介质层、导体层及保护层等组成, 其中,介质层、导体层甚至保护层都要用到溅射镀膜工艺。集成电路领域的镀 膜用靶材主要包括铝靶、钛靶、铜靶、钽靶、钨钛靶等,要求靶材纯度很高, 一般在 5N(99.999%)以上。全球溅射靶材的龙头企业主要是美国的霍尼韦尔和普莱克斯,日本的日矿金属、 住友化学、爱发科、三井矿业和东曹。相关上市公司主要有:阿石创、有研新材、隆华科技、江丰半导体3、封装材料半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片 的过程。封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后被切割为小的 晶片(Die),然后将切割好的晶片用胶水贴装到相应的基板(引线框架)架的 小岛上,再利用超细的金属(金锡铜铝)导线或者导电性树脂将晶片的接合焊 盘(Bond Pad)连接到基板的相应引脚(Lead),并构成所要求的电路;然后 再对独立的晶片用塑料外壳加以封装保护,塑封之后还要进行一系列操作,封 装完成后进行成品测试,通常经过入检 Incoming、测试 Test 和包装 Packing 等工序,最后入库出货。整个封装流程需要用到的材料主要有芯片粘结材料、 陶瓷封装材料、键合丝、引线框架、封装基板、切割材料等。芯片粘结材料芯片粘结材料是采用粘结技术实现管芯与底座或封装基板连接的材料,在物理 化学性能上要满足机械强度高、化学性能稳定、导电导热、低固化温度和可操 作性强的要求。在实际应用中主要的粘结技术包括银浆粘接技术、低熔点玻璃 粘接技术、导电胶粘接技术、环氧树脂粘接技术、共晶焊技术。环氧树脂是应 用比较广泛的粘结材料,但芯片和封装基本材料表面呈现不同的亲水和疏水性, 需对其表面进行等离子处理来改善环氧树脂在其表面的流动性,提高粘结效果。根据 SEMI 和 IC Mtia 数据,2016 年全球芯片粘结材料的市场规模大约 7.5 亿 美元,其中国内市场规模约 20 亿元。相关上市公司主要有:飞凯材料、联瑞新材、宏昌电子陶瓷封装材料陶瓷封装材料是电子封装材料的一种,用于承载电子元器件的机械支撑、环境 密封和散热等功能。相比于金属封装材料和塑料封装材料,陶瓷封装材料具有 耐湿性好,良好的线膨胀率和热导率,在电热机械等方面性能极其稳定,但是 加工成本高,具有较高的脆性。目前用于实际生产和开发利用的陶瓷基片材料 主要包括 Al2O3、BeO 和 AIN 等,导热性来讲 BeO 和 AIN 基片可以满足自然 冷却要求,Al2O3 是使用最广泛的陶瓷材料,BeO 具有一定的毒副作用,性能 优良的 AIN 将逐渐取代其他两种陶瓷封装材料。根据 SEMI 数据显示,2016 年全球陶瓷封装材料的市场规模大约 21.7 亿美元, 占到全部封装材料市场规模的 11%左右,其中国内市场规模约 35 亿元。全球 龙头企业主要是日本企业,如日本京瓷、住友化学、NTK 公司等。相关上市公司主要有:三环集团封装基板封装基板是封装材料中成本占比最大的一部分,主要起到承载保护芯片与连接 上层芯片和下层电路板的作用。完整的芯片是由裸芯片(晶圆片)与封装体(封 装基板与固封材料、引线等)组合而成。封装基板能够保护、固定、支撑芯片, 增强芯片的导热散热性能,另外还能够连通芯片与印刷电路板,实现电气和物 理连接、功率分配、信号分配,以及沟通芯片内部与外部电路等功能。早期芯片封装通常使用引线框架作为导通芯片与支撑芯片的载体,但是随着 IC 特征尺寸不断缩小,集成度不断提高,只有封装基板能够实现将互联区域由线 扩展到面,可以缩小封装体积,因此有逐步提到传统引线框架成为主流高端封 装材料的趋势。封装基板通常可以分为有机、无机和复合等三类基板,在不同封装领域各有优 缺点。有机基板介电常数较低且易加工,适合导热性能要求不高的高频信号传 输;无极基板由无机陶瓷支撑,耐热性能好、布线容易且尺寸稳定性,但是成 本和材料毒性有一定限制;复合基板则是根据不同需求特性来复合不同有机、 无机材料。未来预计有机和复合基板将是主流基板材料。根据 SEMI 和 IC Mtia 数据,2016 年全球有机基板以及陶瓷封装体合计市场规 模达 104.5 亿美元,占到全部封装材料的 53.3%,国内市场规模约 80 亿元,占 全部封装材料的 30%。全球封装基板龙头企业主要是日本的 Ibiden、神钢和京 瓷、韩国的三星机电、新泰电子和大德电子、台湾地区的 UMTC、南亚电路、 景硕科技等公司。相关上市公司主要有:兴森科技、深南电路键合丝半导体用键合丝是用来焊接连接芯片与支架,承担着芯片与外界之间关键的电 连接功能。键合丝的材料已经从过去的单一材料,逐步发展为金、银、铜、铝 用相关复合材料组成的多品种产品。根据应用领域以及需求的不同,可以选择 各种不同的金属复合丝。根据 SEMI 数据显示,2016 年全球半导体键合丝的市场规模大约 31.9 亿美元, 其中国内市场规模约 45 亿元。全球半导体用键合丝的龙头企业主要是主要是日 本的贺利氏、田中贵金属和新日铁等。相关上市公司主要有:康强电子引线框架引线框架作为半导体的芯片载体,是一种借助于键合丝实现芯片内部电路引出 端与外部电路(PCB)的电气连接,形成电气回路的关键结构件。引线框架起 到了和外部导线连接的桥梁作用,绝大部分的半导体中都需要使用引线框架, 是电子信息产业中重要的基础材料。引线框架的通常类型有 TO、DIP、SIP、 SOP、SSOP、QFP、QFN、SOD、SOT 等,主要用模具冲压法和蚀刻法进行 生产。相关上市公司主要有:康强电子4、切割材料半导体晶圆切割是半导体芯片制造过程中重要的工序,在晶圆制造中属于后道 工序,将做好芯片的整片晶圆按照芯片大小切割成单一的芯片井粒,称为芯片 切割和划分。在封装流程中,切割是晶圆测试的前序工作,常见的芯片封装流 程是现将整片晶圆切割为小晶粒在进行封装测试,而晶圆级封装技术是对整片 晶圆进行封装测试后再切割得到单个成品芯片。目前主流的切割方法分为两类,一类是用划片系统进行切割,另一种利用激光 进行切割。其中划片系统切割主要包括砂浆切割和金刚石材料切割,该技术起 步较早市场份额较大,金刚石锯片或者金刚石线是此类常见的划片系统切割工 具,但机械力切口较大,易导致晶圆破碎。激光切割属于新兴无接触切割,切 割表面光滑平整,适用于不同类型晶圆切割。相关上市公司主要有:岱勒新材全球半导体市场巨大,材料产业由外企主导全球半导体材料市场空间巨大,仍有持续增长动力。2018 年全球半导体材料销 售额已经达到 519 亿美元,同比增长 11%,其中晶圆制造材料(包括硅晶圆和 化合物半导体等基体材料)全球销售 322 亿美元(同比增长+16%),封装材料 全球销售 197 亿美元(同比增长 3%)。由于半导体芯片尺寸日趋缩小,封装材 料的市场增速明显小于晶圆制造材料。从销售区域分布情况来看,东亚地区占据绝大部分市场份额。根据 SEMI 数据, 2018 年中国台湾凭借其庞大的代工厂和先进的封装基地,以 114.5 亿美元连续 第九年成为半导体材料的最大消费地区,市场占比 22%;中国大陆半导体材料 市场销售额 84.4 亿美元,市场占比 16%;韩国和日本的市场销售额分别为 87.2 和 76.9 亿美元,市场占比分别为 17%和 15%。东亚地区的半导体材料销售额 占到全球市场约 70%,成为当之无愧的半导体产业全球制造基地。全球晶圆产能仍在扩张,半导体材料需求增长动力仍然强劲。根据 IC Insights, 在经过 2017 年增长 7%之后,2018 年和 2019 年全球晶圆产能都将继续增长 8%,分别增加 1730 万片和 1810 万片。在这两年中,众多的 DRAM 和 3D NAND Flash 生产线导入是晶圆产能增加的主导因素。预计 2017-2022 年全球 IC 产能 年增长率平均为 6.0%,而 2012-2017 年平均为 4.8%。半导体材料的市场需求 基本上与晶圆产能情况保持密切联系,全球晶圆产能增长为上游半导体材料行 业带来了强劲的需求。2018 年全球半导体材料销售规模在 519 亿美元,其中基体材料、制造材料、封 装材料占比分别为 23.4%、38.7%和 28.0%。根据细分统计数据,制造材料中 电子特气、掩膜版、光刻胶的市场占比最大,合计占到制造材料的 61%。按照 未来硅片尺寸越来越大(18 英寸将成为主流)的趋势,我们预计基体材料的占 比将变小,制造材料的占比将有望扩大。海外企业占据半导体产业链的绝对份额。欧美、日韩台等国家和地区是全球半导 体巨头的主要所在地,根据 WSTA 数据,2018 年全球半导体市场规模约为 4373 亿美元,中国半导体市场规模约为 1220 亿美元(占全球约 28%),中国已经成 为全球最大的半导体消费市场。中国在半导体消费市场上已经成为了世界第一, 但是半导体产业中的市场占比却非常有限,全球前十大半导体企业中没有一家 是来自中国。半导体材料行业同样也是由外企主导。我们在第一部分盘点各种材料的市场规 模以及全球龙头时,基本可以看到各类细分材料的绝大部分市场份额都被海外 企业所占据,国内企业目前还处于努力尝试国产化替代的过程当中。乘国产化之风,半导体材料进口替代成必然趋势在上一篇半导体行业专题报告中,我们认为半导体产业链国产化虽然是一个十 分艰巨的任务,但是可以通过采取合适的策略,利用国内庞大的工程师红利,辅 之合理的政策导向,国内半导体产业实现自主可控之路一定能够实现。例如,在上 游设备、材料、设计等领域,在不同的细分赛道通过重点突破,则有望成功。在中 游晶圆制造及下游封装测试领域,需要保持战略定力,对新技术保持持续的研发投 入,对行业内领先企业保持持续跟进保证不掉队,长此以往则有望达到国际一流水 平。半导体制造产业向大陆地区转移的趋势不可逆转。根据 CEMIA 数据,2018 年国 内半导体材料市场规模已经达到 794 亿元。未来随着中国半导体产能规模的继续 扩张,以及全球半导体晶圆制造产业向大陆转移的趋势不可逆转,我们认为国内半 导体市场规模在全球占比还将继续保持提升的趋势。未来国内半导体材料的市场规 模毫无疑问也将继续扩大,按照目前的行业增速,我们预计 2021 年国内半导体市 场规模将首次超过 1000 亿元。只要国内市场需求足够大,材料端实现进口替代将水到渠成。国内优势明显的 基建配套、庞大的工程技术人员数量基础、容量巨大的国内需求市场,已经培 育了不少优秀的世界级制造业公司。国内化工行业同样受益于此,过去多年的 迅速发展,可以说国内化工在上游基础化工原材料端已经独步全球,除了一些 对资源禀赋要求较高的细分产业链之外,国内大部分大宗化工品基本上都已经 基本解决或者正在解决国产化的问题。虽然目前国内每年仍需进口占比不小的 化工品,但基本上都是以一些较为高端的精细化工品或者化工新材料为主,半 导体材料就属于主要依赖于进口的化工品。以锂电池材料为例,10 多年前国内锂电池产业刚开始发展时,国内精细化工材 料的生产能力较为薄弱,且当时锂电池主要是以 3C 消费类电子产品使用为主, 市场需求空间也相对较小。因此当时国内锂电池材料基本都是以进口为主,国 产化率提升的较为缓慢,国产锂电池材料很难进入到主流的锂电池生产厂(如 东芝、三星、LG 等)的供应链当中。但是自从 2011 年国务院将新能源汽车列 为战略新兴产业之一,且持续加大政策支持力度,国内动力锂电池产业链迅速 发展,锂电池的市场规模也随之打开。在国内巨大的市场需求刺激之下,大量 企业投入巨额资金到锂电池材料的研发和产能扩张,国内锂电池材料迅速完成 国产替代的进程。在 2017 年,锂电池四大材料就基本完成国产替代,甚至有 部分材料能够实现出口,参与全球市场的竞争。国内锂电池产业链以极其优秀 的制造能力,以及完备的产业配套,甚至吸引全球锂电池汽车龙头公司特斯拉 到国内建厂生产整车。锂电池材料产业链的成功先例,无疑对国内发展半导体 材料产业链有着良好的借鉴作用。目前我国半导体材料的国产化率约为 20%,如果 5 年后国内半导体材料能基本 实现国产化,再考虑到国内半导体材料整体市场规模在 5 年后至少增长 50%, 那么 5 年左右的时间里国内半导体企业的整体销售额将扩大到目前的 7-8 倍。 目前国内半导体材料的市场份额较为分散,未来市场份额必然会集中到少数几 个龙头公司。我们认为国内半导体材料行业必然会出现几个在 5 年内连续保持 高速成长的企业,紧紧跟随国内半导体产业链国产化的趋势,营业规模扩张的 空间在 10 倍以上。(报告来源:国信证券)(如需报告请登录未来智库)