欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
长篇回顾|蛋白质组学的发展:生命科学的里程碑跟著你

长篇回顾|蛋白质组学的发展:生命科学的里程碑

011 蛋白质组学概念的提出早在18世纪,人类就发现了蛋白质这一类型的生物分子,然而直到1938年,瑞典化学家Jons Jakob Berzelius才明确提出了蛋白质的概念,指出蛋白质是由氨基酸组成的一类生物大分子。1949年,英国科学家Frederick Sanger首次测得了蛋白质牛胰岛素的氨基酸序列,并验证了蛋白质由氨基酸组成,他也凭借此项研究成果获得了1958年的诺贝尔化学奖。就在同一年,英国科学家Francis Crick首次提出分子生物学中心法则,这是20世纪生命科学领域最重要的发现之一 :脱氧核糖核酸(deoxyribonucleic acid,DNA)是生物体内遗传信息的载体,DNA以自身为复制模板,通过转录作用将遗传信息传递给核糖核酸(ribonucleic acid,RNA),成熟的信使RNA(messenger RNA,mRNA)在核糖体上被翻译成一条长肽,然后经折叠加工形成具有生理活性的成熟蛋白。蛋白质是生命的物质基础,作为生物体活动功能的最终直接执行者,对生命活动的实现具有十分重要的作用,参与了生物体内几乎所有的生命活动过程。随着分子生物学技术的发展,蛋白质的诸多功能不断被研究和报道,如蛋白质可以作为离子通道参与信号转导等,人们愈发重视对蛋白质的研究。21世纪初,生命科学领域迎来了一个重要的里程碑——人类基因组草图的绘制完成。2001年由美国、英国、法国、德国、日本和中国科学家共同参与的人类基因组计划(Human Genome Project,HGP)与Celera基因公司共同公布了人类基因组DNA序列草图,这也代表着人类在生命科学领域迈上了新台阶。2003年该计划的完成可以说是近半个世纪以来最激动人心的一项生命科学成就,它第一次揭示了人类的DNA序列信息,并提供了人类生命信息的蓝图。该研究成果分别发表在Nature、Science两大国际著名期刊上(Lander et al.,2001;Venter et al.,2001)。人类基因组计划因其破解人类遗传密码的里程碑式意义及对于遗传性疾病预防的潜在应用价值,与阿波罗登月计划、曼哈顿原子弹计划一起,并称为自然科学史上的三大计划。随着人类全基因组序列的破译和功能基因组学研究的展开,生命科学家越来越关注如何用基因组研究的模式开展蛋白质组学的研究。因此,Nature、Science在公布人类基因组草图的同时,分别发表了“And now for the proteome”和“Proteomics ingenomeland”的述评与展望(Abbott,2001;Fields,2001)。文中认为蛋白质组学将成为21世纪最大的战略资源,并将成为人类基因争夺战的战略制高点之一,这将蛋白质组学的地位提高到了前所未有的高度。事实上早在1994年,澳大利亚科学家Marc Wilkins便提出了蛋白质组(proteome)这一概念——表征基因组所能表达的全部蛋白。1997年,蛋白质组学(proteomics)的概念产生,其研究的主要内容是细胞、组织或器官内的全部蛋白质。此后该学科迅速发展,并得到了生命科学研究领域的重视。2001年,国际人类蛋白质组组织(Human Proteome Organization,HUPO)正式宣告成立,推动了蛋白质组学研究领域的发展。在2002年国际蛋白质组研讨会上,科学家明确提出了开展 “人类肝脏蛋白质组计划(Human Liver Proteome Project,HLPP)”的建议,并于2003年正式启动,至此人类蛋白质组计划的帷幕正式拉开。该项目也是我国科学家在生命科学领域领导的一次重大国际合作项目。蛋白质组学在细胞的增殖、分化、肿瘤形成等方面的研究中已经取得了不少成果和进展。尤其在癌症研究方面,已经鉴定到了一批肿瘤相关蛋白,这为相关疾病的早期诊断、蛋白质药物靶标的发现、治疗和预后提供了重要依据和线索。022 蛋白质组学的特点人类基因组序列的测定,标志着基因的研究迈上新台阶。随着基因测序技术的改进和成熟,人们对基因的研究更加便捷,对基因的认识也逐渐深入。目前认为可编码蛋白质的基因约20 000个。然而同一个基因可以表达出不同的信使RNA片段,而信使RNA在成熟过程中可能会出现剪切重组等,这显著增加了可表达蛋白的数目。同时,信使RNA翻译出的蛋白质会经历翻译后修饰(Berget,1995;Witze et al.,2007),实现对自身功能的调控,这进一步使蛋白质组的研究复杂化。此外,细胞内表达的蛋白质在时间和空间尺度上具有动态变化的性质,因此细胞内蛋白质的分析远比基因组的分析复杂和具有挑战性。基因组学的研究对象是DNA,DNA的性质较为稳定,且微量的目标样品可以通过PCR技术将其扩增,从而便于研究。目前DNA测序技术已较为成熟,且基因组学的数据库已相对完善,对于基因的研究已经进入了相对成熟的阶段。然而作为基因组后时代,蛋白质组目前尚处于探索和发展阶段。蛋白质组学研究的对象——蛋白质,其本身的性质不够稳定,可能同时存在多种不同的翻译后修饰类型,且其在不同细胞、组织内的表达丰度的动态范围较大。随着高分辨生物质谱技术的迅速发展及基于基因序列的蛋白质数据库的逐步完善,目前已可以实现对蛋白质氨基酸序列的测定,但是仍有大量的内容是未知的,包括蛋白质的定位、蛋白质与小分子的相互作用、蛋白质与蛋白质的相互作用、蛋白质的生命周期等。蛋白质组学的研究,可以从时间和空间角度对细胞、组织的蛋白质进行全面深入的研究,从而深入理解细胞如何利用蛋白质实现各种生理功能的调控。蛋白质组学亟待发展,研究技术也有待进一步发展和提升。033 生物质谱技术科学的进步往往带来技术的革新,而技术的革新会加速科学的发展。在蛋白质组学概念提出后的几年,由于受到研究技术的限制,发展十分缓慢。近些年,高分辨质谱技术(mass spectrometry,MS)的迅速发展,成为了蛋白质组学领域的核心技术。质谱技术是化学领域中研究化合物的一个重要手段。然而,直到软电离离子化技术的出现,才使得用质谱研究生物大分子成为了可能。2002年的诺贝尔化学奖授予美国科学家John Fenn和日本科学家Koichi Tanaka(“The Nobel Prize in Chemistry 2002”。Nobelprize.org. Nobel Media AB 2014. Web. 30 Apr 2015),以表彰他们在将软电离离子化方法用于生物大分子质谱分析方面所作出的贡献。John Fenn发明了电喷雾离子化方法(electrospray ionization,ESI)(Fenn et al.,1989)。样品在毛细管色谱柱中分离,经毛细管柱柱头流出时,在高压电场的作用下形成带电的小液滴。随着液滴的溶剂蒸发,液滴表面离子密度逐渐增大,当达到瑞利(Rayleigh)极限时,液滴发生破裂,形成更小的带电液滴。而后在电场作用下重复蒸发、分裂的过程,直至形成气相离子进入质谱,并被检测。该方法的优点在于可以实现从液态到气态分子的转变,产生的离子可以带有一个或多个电荷。Koichi Tanaka发明的基质辅助激光解析离子化技术(matrix-assisted laser desorption ionization,MALDI)利用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,从而使生物分子电离(Tanaka et al.,1988)。由于电喷雾离子化可形成单电荷离子及多电荷离子而有别于其他的MS离子化技术,并能实现高效液相与质谱的串联。特别是在1994年,Wilm和Mann发展了纳升级喷雾离子源(nano-electrospray ionization source,nanoESI source),与传统的ESI源(流速1~100 L/min)相比,该离子源可以采用更小的溶剂流速(10~500 nL/min),并且电喷雾更稳定,生成的带电液滴更小,能在室温条件下更好地实现去溶剂化(Wilm and Mann,1996),所以在目前的生物质谱中尤其是蛋白质组学研究领域,nanoESI离子化技术应用较为广泛。此外,对于质谱仪而言,质量分析器是其核心部件。随着分辨率和检测速率的提高,质谱仪在蛋白质组学研究中的优势逐渐凸显。目前已有的质量分析器的类型有 :磁质谱、双聚焦质谱、离子回旋共振质谱、四极杆、四极杆离子阱质谱、时间飞行质谱、傅里叶变换质谱、三重四极杆质谱、线性离子阱质谱、静电轨道场离子回旋加速质谱(Orbitrap)等。其中,Orbitrap无疑是近20年质谱技术中最重要的发明。它极大地缩小了高分辨质量分析器的体积,维护更方便,使得高分辨质谱的台式化和易用化成为了可能,从而便于应用和推广。Thermo公司于2005年推出了第一台商业化的Orbitrap型质谱仪,其分辨率达到了100 000 (m/z 400),最大扫描速度为1.0 Hz。目前高效液相串联质谱在蛋白质和蛋白质的翻译后修饰的鉴定分析方面起着重要的作用,其原理是待测样品经高效液相色谱分离之后,经离子源的离子化,进入质谱。在质谱内通过特定的方式,将母离子碎裂产生碎片离子 ;进一步对碎片离子进行检测,得到该分析物的质谱检测图谱。随后对该图谱进行分析,通过与蛋白质数据库中的理论图谱比对,从而将其氨基酸序列信息和含有的修饰解析出来。质谱技术在生物大分子领域中的应用越来越广,包括定性和定量的高通量蛋白质分析,高通量的蛋白质翻译后修饰分析,鉴定蛋白质-蛋白质相互作用和调控网络,鉴定蛋白质和小分子的相互作用,生物标志物的鉴定和研究等。044 蛋白质组学的研究进展近20年来,蛋白质组学领域的研究技术在不断地革新和提高。1989年,电喷雾离子化技术发明,使得用质谱分析生物大分子成为可能;1993年,肽指纹图谱技术发明,推动了蛋白质鉴定技术的发展 ;1996年,利用二维凝胶电泳技术,实现了对酵母全蛋白的分析 ;2002年,细胞培养稳定同位素标记(stable isotope labeling by amino acids in cell culture,SILAC)技术发明,使得定量蛋白质组学研究迈上新台阶。1998年,中国启动了“人类肝脏蛋白质组计划”。2010年,中国团队完成肝脏蛋白质组的检测,共鉴定到6788个蛋白质,至此第一个人类器官的全蛋白质组检测工作得以完成(He,2005)。但由于当时的技术局限,所鉴定的蛋白质的数目还远远没有达到理论上肝脏全蛋白质组的蛋白数。近几年来,生物质谱技术进一步发展,其检测灵敏度和分辨率明显提高,扫描速度也有了显著提升,已经具备了高通量深度蛋白质组学研究的条件。因而,关于全蛋白质表达谱研究工作的报道越来越多。基于质谱的飞速发展,科研工作者目前已经对细胞内的不同细胞器做了组学研究,包括线粒体、高尔基体、细胞核等。蛋白质组学领域的知名科学家Matthias Mann在2008年报道了用一个月的时间鉴定了接近8000个蛋白质的成果(Hubner et al.,2008)。2011年,经过样品制备方法的创新、色谱分离方法的优化和质谱仪器的升级,Mann团队通过利用样品处理新方法FASP(flter-aided sample preparation)对小鼠的肝脏组织进行蛋白质组学研究,最终在21 d质谱数据采集时间内鉴定了高于10 000个蛋白质(Wisniewski et al.,2011),这是目前最具深度的蛋白质组学研究之一。随着质谱仪准确度、分辨率和扫描速度的不断提高,Mann实验室在2014年利用Q Exactive超高分辨率质谱仪,在4 d时间内定量分析了小鼠肝脏组织样本中的11 520个蛋白质(Azimifar et al.,2014)。因此随着样品制备方法、色谱分离方法及质谱仪器的不断优化和创新,科学家可以对生物体内的蛋白质进行更具深度的鉴定,从而更加深入地研究生命活动中的生理生化过程。2014年,国际著名杂志Nature子刊Nature Methods评述了近10年内的自然科学研究领域方法,基于质谱的蛋白质组学技术便是其中之一(Ten years of Methods,2014),可见质谱的发展对自然科学研究领域产生了极为重要的影响。当然,组学的研究并非仅仅是蛋白质测序,还包括了组学定量、靶向蛋白质组的研究等。其中靶向蛋白质组的研究被列入了Nature Methods 2012年度生命科学研究的方法学进展。2014年对于蛋白质组学的研究来说是具有里程碑意义的一年。4月,国际顶级期刊Nature首次报道了两篇关于接近完整的人类蛋白质组表达谱草图的文章。其中一篇文章收集了30种人类正常组织和细胞样本,包括成人和胎儿的组织及血液细胞,最终共鉴定到17 294个基因编码的蛋白,占总编码蛋白基因数的84%(Kim et al.,2014)。另外一篇文章,则综合了已发表的公共数据集及其实验室已有的数据,包括数十种人类组织、体液样本及细胞株等的鉴定分析结果,共鉴定到18 097个基因编码蛋白,占总编码蛋白基因数的92%(Wilhelm et al.,2014)。以上两篇文章共同绘制出了第一张人类蛋白质草图。近些年,中国蛋白质组学研究领域也在快速发展。2014年,“中国人蛋白质组草图计划”(CNHPP)这一科技部的重点项目正式展开,计划绘制包括心脏、肝脏、肺、肾脏等在内的10个最重要人体器官的蛋白质组生理和病理图谱,旨在以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,构建中国人类蛋白质组的“百科全书”。055 蛋白质组学的应用通过基因组测序和分析,可以发现多种诱发癌症的驱动基因。2013年在Science杂志上发表了题为“Cancer genome landscape”的综述(Vogelstein et al.,2013),提出大部分癌症的发生是由于2~8个驱动基因突变,人体内目前认知到的癌症驱动基因共有约140个。尽管如此,驱动基因突变并不能解释所有癌症发生发展的现象。例如,2014年Nature杂志上发表的对230例肺腺癌临床样本的研究结果称,部分样本的基因组测序结果未能解释信号通路被激活的现象(The Cancer Genome Atlas Research Network,2014)。为了加深对癌症发生发展机制的认识,迫切需要对癌症进行深入的蛋白质组学研究,从而从蛋白质水平阐释癌症可能的发生发展机制。2006年年初,美国国立癌症研究院(National Cancer Institute,NCI)开始了一项为期5年,耗资1.04亿美元的临床蛋白质组肿瘤分析联盟(Clinical Proteomic Tumor Analysis Consortium,CPTAC)(Ellis et al.,2013),其目的在于建立应用于癌症诊断、治疗和预防的蛋白质组学技术,建立数据分析标准流程及试剂、参考物质的应用等系统,从而达到拓宽蛋白质组学技术在临床癌症诊断中的应用。目前该项目已经取得了非常出色的进展,其中一项工作为对被TCGA项目(The Cancer Genome Atlas)表征的95个结肠和直肠癌样本进行了深入的蛋白质组学及生物信息学分析,从蛋白质组学层面对结肠、直肠癌进行分型。在所得的5种蛋白质分型中,其中的两种与TCGA的一种转录本亚型——“微卫星不稳定亚型/CpG岛甲基化表型亚型”有重叠部分,但也发现了与之明显不同的基因突变、DNA甲基化和蛋白质表达图谱,这些都具有不同的临床表现,为临床疾病的研究提供了新的思路和检测指标(Zhang et al.,2014)。蛋白质组学在人类疾病中的研究应用已经在一些疾病中开展,如癌症、皮肤病、心脏病等。研究包括寻找与疾病相关的单个蛋白,整体研究某种疾病引起的蛋白质表达或修饰水平的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。随着精准医疗时代的到来,蛋白质组学在药物研究、临床诊断和个性化治疗等方面将具有更为广阔的应用前景。

利根

蛋白质组学:照亮基因组外的星空,解码生命系统的建构原理

来源:科技日报图集 原标题:做基因组学做不了的事 蛋白质组学可更精准打击癌症视觉中国供图 近日,国际人类蛋白质组组织公布了2020年度权威奖励获奖名单,中国科学院院士、军事科学院军事医学研究院研究员贺福初荣获蛋白质组学杰出成就奖。贺福初院士率先提出人类蛋白质组计划的科学目标与技术路线,倡导并领衔了人类第一个关于组织、器官的蛋白质组计划,揭示了人体首个器官(肝脏)蛋白质组。2014年,贺福初院士领导启动“中国人蛋白质组计划”(CNHPP)。此次获奖是国际蛋白质组学领域对他率先提出并反复实践的“蛋白质组学驱动的精准医学”这一理念与范式的高度认可,标志着我国蛋白质组学研究再度领跑国际。那么,什么是蛋白质组学?蛋白质组学驱动的精准医学又是什么?我国当前研究进展如何?就这些问题,科技日报记者采访了贺福初院士。解密基因组需要系统认识蛋白质组蛋白质组,是指一个基因组、一个细胞或组织、一种生物体所表达的全部蛋白质。蛋白质组研究,是在整体水平上研究细胞、组织乃至整个生命体内蛋白质组成及其活动规律的科学,由此从蛋白质水平上获得关于疾病发生、细胞代谢等过程整体而全面的认识。贺福初表示:“说到蛋白质组,就不得不提到基因组。基因组和蛋白质组的关系,好比‘词典与文章’‘元素表与化工厂’的关系。随着人类等生物体全基因组序列的测序完成,科学家逐步意识到基因组只是书写了遗传密码的‘天书’,仅从基因序列的角度根本无法完整、系统地阐明生物体的功能。”“很多生命现象之谜,不能直接从基因序列中得到解答。蛋白质是生命活动的主要执行者,想要解密基因组,必须先系统认识蛋白质组。”贺福初介绍,正因如此,国际权威期刊《自然》《科学》在2001年2月公布人类基因组草图的同时,分别发表相关述评与展望,认为蛋白质组学将成为新世纪最大战略资源——人类基因研究争夺战的战略制高点之一。当月,人类蛋白质组组织(HUPO)即宣告成立。次年,“人类蛋白质组计划”(HPP)宣布启动。“人类蛋白质组计划”是继人类基因组计划(HGP)之后最大规模的国际性科技工程,也是21世纪第一个重大国际合作计划。“由于蛋白质组的研究对象远比基因组要复杂得多,需要从国家战略层面统筹规划,整合全国相关领域科研之力,配合专项资金和资源才能够推动。所以在提出之初,国际上仅有少数发达国家的几个尖端实验室开展相应的研究。”贺福初说。1998年初,国家自然科学基金委设立了“蛋白质组及其动态变化研究”重大项目。这是我国政府支持的第一个蛋白质组学研究项目,为后续实施系列蛋白质组学国家级项目并走向国际前列奠定了重要基础。打造人类蛋白质组计划的“中国模式”经过几年的探索与实践,我国率先提出“人类肝脏蛋白质组计划”(HLPP),并提出建立蛋白质组“两谱、两图、三库”的战略目标,即建立肝脏蛋白质组表达谱、修饰谱、连锁图、定位图、样本库、数据库和抗体库。2002年,国际学界启动“人类肝脏蛋白质组计划”,并于凡尔赛召开的第一届HUPO大会上正式讨论通过。2003年10月,由我国领衔、先后11个国家参与的“人类肝脏蛋白质组计划”全面启动实施。该计划是国际“人类蛋白质组计划”中第一个人体组织器官的蛋白质组计划,是中国科学家倡导和领衔的第一个国际大型合作计划。“从HLPP的提出、论证再到研究工作的展开,历时十余年之久。这是‘大科学计划’的一次意义非凡的中国实践。”贺福初说。记者了解到,在实施HLPP过程中,中国科学家先后研究了中国人胚胎肝组织和中国成人肝脏组织的蛋白质组,鉴定蛋白质超过10000种,并利用这些数据对肝脏生理功能进行了系统解读。通过前期积累,我国在蛋白质组表达谱分析的技术能力上,达到国际先进水平。2007年,蛋白质组学国家重点实验室成立。在2009年的国际蛋白质组标准物质评估中,该重点实验室的技术能力位居全球前6。2018年11月,蛋白质科学研究(北京)国家重大科技基础设施顺利通过国家验收。“有了这些积累,国家科技部首次整合973计划、863计划、国际合作计划,历经数年论证,由蛋白质组学国家重点实验室牵头,于2014年正式启动‘中国人蛋白质组计划’。”贺福初介绍,2018年项目结题时,已完成构建早期肝细胞癌及癌旁组织、弥漫型胃癌及癌旁组织、肠型胃癌及癌旁、肺腺癌及癌旁等疾病组织的深度覆盖蛋白质表达谱,数据量达到52.7TB(万亿字节),在高置信度水平上,定量鉴定人类表达蛋白质15553种,并获得疾病组织信号网络调控蛋白表达变化规律,实现潜在分子标志物和候选靶标的深入发掘。“在此基础上,CNHPP构建了系列正常器官、组织、细胞的蛋白质组定量参考谱。它们相当于人体组织器官体液蛋白质的‘北斗全球定位系统’。”贺福初说。全面分析多种人体肿瘤蛋白质组“‘精准’二字是医学界追求的目标,即通过病因的精准诊断,制定相应的精准治疗方案和预防策略。”贺福初指出。随着“人类基因组计划”的完成、基因组测序技术的不断提升以及生物信息学与大数据科学的快速发展,催生了基因组学驱动的精准医学,其中最具代表性的就是2006年由美国主导的“癌症基因组图谱计划”。但其仍有不少局限性。为此,美国在此基础上于2011年启动临床蛋白质组肿瘤分析项目,旨在用不同种类癌症蛋白质组注释其基因组全景图,创建了蛋白质组学依附于基因组学的蛋白质组—基因组学。“但这种蛋白质组学研究始终未能摆脱基因组学的先天不足。”贺福初告诉记者,“而我们的CNHPP计划另辟蹊径,对多种人体肿瘤进行了全面深入的蛋白质组分析。2018年,我们发表了弥漫型胃癌的蛋白质组全景图,建立了首个与预后相关的蛋白质组分子分型;2019年,我们率先在《自然》公布了早期肝细胞癌的蛋白质组分子分型并发现新的治疗靶标,开启了蛋白质组驱动的精准医学新时代;2020年,我们又在《细胞》相继发表了非小细胞肺癌的蛋白质组分子分型研究,再次证明了蛋白质组学在精准医学中的独特性和至关重要性,为我国持续引领国际蛋白质组学研究创造了良好的条件。”记者了解到,蛋白质组驱动的精准医学是由我国科学家首创的精准医疗新模式,是一项国际多中心、多学科协作的大科学项目,其实施的规模和复杂程度均远超HGP,对科技、经济、社会发展的推动作用也难以估量。贺福初说:“如果说抗生素的发明引发了第一代医学治疗技术革命,影像学和分子医学的发展引发了第二代医学诊断技术革命,那么,由蛋白质组学驱动的精准医学,势必带来精确诊断与精准治疗统一的第三代医学革命。”“下一步,‘中国人蛋白质组计划’团队将在国际范围部署建立蛋白质组驱动的精准医学技术体系和行业标准,进一步提升对重大、疑难疾病的‘精准定位’和‘精确打击’能力。”贺福初透露。(记者 张 强)责任编辑: 孙慧

外以乱人

做基因组学做不了的事 蛋白质组学可更精准打击癌症

视觉中国供图近日,国际人类蛋白质组组织公布了2020年度权威奖励获奖名单,中国科学院院士、军事科学院军事医学研究院研究员贺福初荣获蛋白质组学杰出成就奖。贺福初院士率先提出人类蛋白质组计划的科学目标与技术路线,倡导并领衔了人类第一个关于组织、器官的蛋白质组计划,揭示了人体首个器官(肝脏)蛋白质组。2014年,贺福初院士领导启动“中国人蛋白质组计划”(CNHPP)。此次获奖是国际蛋白质组学领域对他率先提出并反复实践的“蛋白质组学驱动的精准医学”这一理念与范式的高度认可,标志着我国蛋白质组学研究再度领跑国际。那么,什么是蛋白质组学?蛋白质组学驱动的精准医学又是什么?我国当前研究进展如何?就这些问题,科技日报记者采访了贺福初院士。解密基因组需要系统认识蛋白质组蛋白质组,是指一个基因组、一个细胞或组织、一种生物体所表达的全部蛋白质。蛋白质组研究,是在整体水平上研究细胞、组织乃至整个生命体内蛋白质组成及其活动规律的科学,由此从蛋白质水平上获得关于疾病发生、细胞代谢等过程整体而全面的认识。贺福初表示:“说到蛋白质组,就不得不提到基因组。基因组和蛋白质组的关系,好比‘词典与文章’‘元素表与化工厂’的关系。随着人类等生物体全基因组序列的测序完成,科学家逐步意识到基因组只是书写了遗传密码的‘天书’,仅从基因序列的角度根本无法完整、系统地阐明生物体的功能。”“很多生命现象之谜,不能直接从基因序列中得到解答。蛋白质是生命活动的主要执行者,想要解密基因组,必须先系统认识蛋白质组。”贺福初介绍,正因如此,国际权威期刊《自然》《科学》在2001年2月公布人类基因组草图的同时,分别发表相关述评与展望,认为蛋白质组学将成为新世纪最大战略资源——人类基因研究争夺战的战略制高点之一。当月,人类蛋白质组组织(HUPO)即宣告成立。次年,“人类蛋白质组计划”(HPP)宣布启动。“人类蛋白质组计划”是继人类基因组计划(HGP)之后最大规模的国际性科技工程,也是21世纪第一个重大国际合作计划。“由于蛋白质组的研究对象远比基因组要复杂得多,需要从国家战略层面统筹规划,整合全国相关领域科研之力,配合专项资金和资源才能够推动。所以在提出之初,国际上仅有少数发达国家的几个尖端实验室开展相应的研究。”贺福初说。1998年初,国家自然科学基金委设立了“蛋白质组及其动态变化研究”重大项目。这是我国政府支持的第一个蛋白质组学研究项目,为后续实施系列蛋白质组学国家级项目并走向国际前列奠定了重要基础。打造人类蛋白质组计划的“中国模式”经过几年的探索与实践,我国率先提出“人类肝脏蛋白质组计划”(HLPP),并提出建立蛋白质组“两谱、两图、三库”的战略目标,即建立肝脏蛋白质组表达谱、修饰谱、连锁图、定位图、样本库、数据库和抗体库。2002年,国际学界启动“人类肝脏蛋白质组计划”,并于凡尔赛召开的第一届HUPO大会上正式讨论通过。2003年10月,由我国领衔、先后11个国家参与的“人类肝脏蛋白质组计划”全面启动实施。该计划是国际“人类蛋白质组计划”中第一个人体组织器官的蛋白质组计划,是中国科学家倡导和领衔的第一个国际大型合作计划。“从HLPP的提出、论证再到研究工作的展开,历时十余年之久。这是‘大科学计划’的一次意义非凡的中国实践。”贺福初说。记者了解到,在实施HLPP过程中,中国科学家先后研究了中国人胚胎肝组织和中国成人肝脏组织的蛋白质组,鉴定蛋白质超过10000种,并利用这些数据对肝脏生理功能进行了系统解读。通过前期积累,我国在蛋白质组表达谱分析的技术能力上,达到国际先进水平。2007年,蛋白质组学国家重点实验室成立。在2009年的国际蛋白质组标准物质评估中,该重点实验室的技术能力位居全球前6。2018年11月,蛋白质科学研究(北京)国家重大科技基础设施顺利通过国家验收。“有了这些积累,国家科技部首次整合973计划、863计划、国际合作计划,历经数年论证,由蛋白质组学国家重点实验室牵头,于2014年正式启动‘中国人蛋白质组计划’。”贺福初介绍,2018年项目结题时,已完成构建早期肝细胞癌及癌旁组织、弥漫型胃癌及癌旁组织、肠型胃癌及癌旁、肺腺癌及癌旁等疾病组织的深度覆盖蛋白质表达谱,数据量达到52.7TB(万亿字节),在高置信度水平上,定量鉴定人类表达蛋白质15553种,并获得疾病组织信号网络调控蛋白表达变化规律,实现潜在分子标志物和候选靶标的深入发掘。“在此基础上,CNHPP构建了系列正常器官、组织、细胞的蛋白质组定量参考谱。它们相当于人体组织器官体液蛋白质的‘北斗全球定位系统’。”贺福初说。全面分析多种人体肿瘤蛋白质组“‘精准’二字是医学界追求的目标,即通过病因的精准诊断,制定相应的精准治疗方案和预防策略。”贺福初指出。随着“人类基因组计划”的完成、基因组测序技术的不断提升以及生物信息学与大数据科学的快速发展,催生了基因组学驱动的精准医学,其中最具代表性的就是2006年由美国主导的“癌症基因组图谱计划”。但其仍有不少局限性。为此,美国在此基础上于2011年启动临床蛋白质组肿瘤分析项目,旨在用不同种类癌症蛋白质组注释其基因组全景图,创建了蛋白质组学依附于基因组学的蛋白质组—基因组学。“但这种蛋白质组学研究始终未能摆脱基因组学的先天不足。”贺福初告诉记者,“而我们的CNHPP计划另辟蹊径,对多种人体肿瘤进行了全面深入的蛋白质组分析。2018年,我们发表了弥漫型胃癌的蛋白质组全景图,建立了首个与预后相关的蛋白质组分子分型;2019年,我们率先在《自然》公布了早期肝细胞癌的蛋白质组分子分型并发现新的治疗靶标,开启了蛋白质组驱动的精准医学新时代;2020年,我们又在《细胞》相继发表了非小细胞肺癌的蛋白质组分子分型研究,再次证明了蛋白质组学在精准医学中的独特性和至关重要性,为我国持续引领国际蛋白质组学研究创造了良好的条件。”记者了解到,蛋白质组驱动的精准医学是由我国科学家首创的精准医疗新模式,是一项国际多中心、多学科协作的大科学项目,其实施的规模和复杂程度均远超HGP,对科技、经济、社会发展的推动作用也难以估量。贺福初说:“如果说抗生素的发明引发了第一代医学治疗技术革命,影像学和分子医学的发展引发了第二代医学诊断技术革命,那么,由蛋白质组学驱动的精准医学,势必带来精确诊断与精准治疗统一的第三代医学革命。”“下一步,‘中国人蛋白质组计划’团队将在国际范围部署建立蛋白质组驱动的精准医学技术体系和行业标准,进一步提升对重大、疑难疾病的‘精准定位’和‘精确打击’能力。”贺福初透露。来源:科技日报

刻瓷匠

海上院士讲坛:张玉奎解析蛋白质组学与精准医学的那些事

活动现场中国科学院上海分院院长王建宇,中国金融信息中心总裁助理、工会主席潘恒宁现场致辞。中国金融信息中心总裁助理张超、中科院院士上海浦东活动中心主任吕君等出席活动。领导致辞中国金融信息中心总裁助理、工会主席潘恒宁表示,习总书记在中国科学院第十九次院士大会上提到,实现建成社会主义现代化强国的伟大目标,实现中华民族伟大复兴的中国梦,必须具有强大的科技实力和创新能力。源于此,中国金融信息中心与中科院上海分院联合主办了“海上院士讲坛”。潘恒宁表示,院士是国家的财富、民族的瑰宝,本期有幸邀请到我国著名的分析化学家张玉奎作为主讲嘉宾,海上院士讲坛真正做到了领略“名家大家”,畅享“思想盛宴”。他介绍道,张院士对蛋白质组学的研究,促进了精准医学的发展,其研究在遗传病学、细胞生物学等领域也有广泛应用,这对人类的发展具有非常现实的意义。中国金融信息中心是新华社和上海市政府战略合作的成果,服务于上海国际金融中心建设和新华社打造国际一流新型世界性通讯社的战略目标。基于在品牌、区位、信息、人脉、渠道等方面的综合优势,中国金融信息中心致力于打造一个汇聚声音,凝聚思想的平台。为此,上海金融信息中心造了涵盖院士、国资、科创、养老金融、浙商创业分享等主题的系列讲坛,统称“陆家嘴讲坛”。当前迎来了世界新一轮科技革命和产业变革同我国转变发展方式的历史性交汇期。在这关键时刻,中国金融信息中心也期待更多的院士走进海上院士讲坛,传播真理、传播真知,和大家携手为上海科创中心建设、为世界科技强国建设贡献自己的一份力量。中国科学院上海分院院长王建宇表示,科技兴则民族兴,科技强则国家强。一直以来,习近平总书记始终把创新摆在国家发展全局的核心位置,高度重视科技创新。加快“建设具有全球影响力的科技创新中心”是以习近平同志为核心的党中央赋予上海的重大使命。在中科院党组领导下,上海分院将中科院“率先行动”计划升级版与“上海科创中心建设”紧密结合,形成战略联动,推进研究所体制机制改革,发挥张江综合性国家科学中心建设主力军作用。2018年11月6日,习近平总书记调研上海张江科学城展示厅,对中科院的重大创新成果给予高度评价。中科院共有11项成果参与展示,比重占六成,充分体现了科研国家队的主力军作用。王建宇院长还表示,过去一年,上海分院不仅积极推进张江实验室建设,重大创新成果也不断涌现。脑与智能科技研究院、张江药物实验室等启动筹建、上海光源线站工程(二期)、超强超短激光实验装置、X射线自由电子激光试验装置、硬X射线自由电子激光装置等一批重大科技基础设施建设均有显著进展。上海分院面向国家重大战略需求,例如抗阿尔茨海默症(AD)新药GV-971完成3期临床试验,多家研究所共同完成“北斗组网卫星”、“嫦娥四号”等,真正做到瞄准世界科技前沿。上海分院致力于为探讨创新发展贡献智慧。2019年5月召开的2018年度上海市科学技术奖励大会上,上海分院相关研究所以第一完成单位共获得科技进步特等奖1项,一等奖3项,二等奖1项;自然科学一等奖3项;技术发明一等奖1项,二等奖1项;青年科技杰出贡献奖1人。主旨演讲中国科学院院士、分析化学家张玉奎在题为“蛋白质组学与精准医学”的主题报告中,从研究背景、蛋白质组分析新技术,以及蛋白质组学在精准医学领域中的最新应用进展三个方面剖析了蛋白质组学与精准医学的紧密关系。蛋白质组学进入人们的视野可以追溯到上世纪90年代。随着蛋白质组分析技术的发展和研究的不断深入,其在精准医学领域中发挥的重要作用受到了人们越来越多的认可。张院士从国内外对精准医学的认识和需求铺展开来,介绍了我国蛋白质组分析技术的最新进展,以及在肝癌、胰腺癌、糖尿病等疾病早期诊断、治疗和分型等精准医学领域中的应用进展。张院士以精彩的图文、生动的语言,深入浅出地展示了蛋白质组对精准医学领域发展起到的积极推动作用,令与会者益匪浅。会议后,中国科学院上海分院院长王建宇、中国科学院院士张玉奎还参观了“愿相会于中华腾飞世界时——人民总理周恩来陈列展”。张玉奎简介:中国科学院院士、分析化学家。1965年毕业于南开大学化学系。1965年至今在中科院大连化学物理研究所工作。曾任副所长、国家色谱研究分析中心主任、蛋白质研究重大科学研究计划专家组成员、973前沿交叉领域专家组组长、中国分析测试协会副理事长、中国化学会色谱专业委员会主任等。主要从事色谱基本理论和新技术、新方法的研究。目前国内外发表论文500余篇;2012年获国家自然科学奖二等奖;2003年当选为中国科学院院士。在基础研究方面,建立了系统的色谱动力学和热力学研究方法,为液相色谱专家系统的建立奠定了理论基础。在深入理论研究的基础上,注重完成国家任务与仪器的应用开发。近年来,结合国家重大应用领域的需求,放眼于分析学科与生命学科的交叉发展,侧重开展蛋白质组分析新技术新方法的研究,并将其用于细胞生物学、精准医学和环境毒理等领域。中国科学院上海分院院长王建宇参观“周恩来陈列展”中国科学院院士张玉奎参观“周恩来陈列展”文字:吴天宇、胡一恒、罗春萍、厉梦诗摄影:金伟良、胡一恒统筹:吴天宇本文来源:陆家嘴金融网

虫师

肿瘤靶向蛋白质组学能否替代传统检测技术?

随着肿瘤驱动基因的发现和基因测序等技术的高速发展,恶性肿瘤的治疗已经由传统的手术和放化疗时代进入到以靶向治疗、免疫治疗为主的精准医学时代。从癌症的分子水平检测、大数据分析,到制定综合治疗策略、最终实现个体化治疗,这是精准医学的基本路线。目前,基因检测是肿瘤精准医学的重要手段之一,但基因检测对靶向治疗、化疗药物选择、免疫治疗的指导作用并不完善。临床观察发现,约2/3的肿瘤患者对基于肿瘤基因改变的药物治疗无应答或迅速进展。原因在于蛋白质是药物作用的靶点,同时是基因的产物,是基因功能的执行体。基因异常不等于存在蛋白质的表达,蛋白质的异常表达也并不一定会有基因的改变。近年来发展的基于质谱技术的“临床蛋白质组学”和“蛋白基因组学”填补了单纯基因检测指导肿瘤治疗的不足,成为肿瘤精准医学的最新研究热点。今天下午,由云检医学集团主办,上海医学院病理系、上海韵祥医学科技有限公司、赛默飞世尔科技(中国)有限公司协办的《肿瘤靶向蛋白质组学研究进展》会议于上海绿地万豪酒店举行。会议邀请了复旦大学上海医学院病理学系主任、中华医学会病理学分会副主任委员、中华医学会上海分会病理专业委员会主任委员朱虹光教授出席并担任会议主席。上海市卫生局高级职称评审委员会病理学科组专家、原上海交通大学医学院附属瑞金医院病理科主任金晓龙教授担任会议主持。上海各三甲医院数十位病理科主任、知名专家应邀出席会议并就质谱检测技术及肿瘤蛋白质组学的临床应用前景和国际肿瘤蛋白标志物研究的最新进展进行深入探讨。复旦大学生物医学研究院副院长陆豪杰教授就《蛋白质组学驱动精准医学的探讨》进行了深入的讲解。陆教授指出,蛋白组学作为细胞生理活动的主要承担者,处于精准医学的核心地位,其作用不可忽视。在后基因组时代,精准医学在生物标志物革新、致病机理的系统描述、准确评价疗效等方面面临挑战。而蛋白质组学能够准确判别药物靶标,实现对疾病的有效诊断和预后评估。原上海交通大学医学院附属瑞金医院病理科主任金晓龙教授就国内肿瘤蛋白质组学的临床应用情况进行了介绍。金教授指出,2014年“人类蛋白质组草图”的发布补充了人类基因组和转录组资料,加快了健康和疾病生物医学研究。与基因组学比较,氨基酸的序列、蛋白质的结构、修饰、功能更加复杂,其表达和变化与疾病的发生、发展、转轨直接关联。因此蛋白质组学为研究疾病分子机制、生物标记物、癌症早期诊断、肿瘤分子分型、个体化治疗、和药物开发提供强有力的平台。临床蛋白质学的发展离不开技术的创新与突破。目前常规免疫组化和FISH检测在准确性、特异性、灵敏度等方面存在不足,以胃癌HER2蛋白检测为例,常规免疫组化和FISH检测技术存在20%的假阳性率、7%的假阴性率,严重影响了胃癌患者的靶向治疗。云检医学OncoPlexDx产品基于质谱技术、蛋白质组学数据库及人工智能对肿瘤靶向蛋白质组进行分析,临床研究表明:胃癌患者HER2蛋白的获益值为1825amol/μg,大于1825amol/μg HER3阳性胃癌患者用赫赛丁治疗的总生存期为33个月,而小于1825amol/μg为17.5个月。OncoPlexDx可以作为目前肿瘤检测手段的有效补充,为肿瘤患者提供精准的化疗及靶向治疗用药依据,未来有望替代传统检测技术。会议研讨环节中,现场嘉宾就“临床肿瘤蛋白质组学检测在病理科的运用前景”、“病理辅助诊断技术的主要发展方向”、“病理科诊断运用质谱技术的可行性”等问题进行了深入探讨。大会主席朱虹光教授在最后总结中强调,随着人们对于肿瘤认识的加深,早发现、早诊断、早治疗已经成为癌症防治的关键因素,作为疾病诊断的金标准和肿瘤患者治疗的依据,病理诊断引领了肿瘤精准医疗,通过分析肿瘤的不同病理类型、基因突变状况、不同分期以及患者的身体状况,制定相应的个体化治疗方案,提高临床治疗效果,是目前肿瘤诊疗的发展目标。精确诊断是实现精准医疗的基础,随着蛋白质组学在临床应用上的日趋成熟,已经成为了精准治疗的重要核心技术。云检医学集团是国内在精准健康、精准医疗领域集产业、教学、研究为一体的综合性领军企业,致力于助力“健康中国2030”的宏伟目标。公司的核心技术——高通量多组学质谱检测技术和人工智能大数据解析技术,来源于斯坦福大学转化医学中心逾16年的研发积累。云检医学OncoPlexDx产品运用激光显微切割技术,从石蜡切片中精确的分离出肿瘤细胞,通过高通量质谱对肿瘤蛋白标志物进行靶向检测、定量分析,根据肿瘤蛋白浓度的阈值判断靶向药物、化疗药物的有效性。OncoPlexDx一次能检出31种与肿瘤化疗、靶向治疗、免疫治疗有关的蛋白标记物,将成为临床医生综合治疗癌症的最重要的检查手段之一。(看看新闻Knews记者:毛奕帆 实习编辑:李宇雯)

奎蹄曲隈

脑科学日报|最大规模的AD蛋白组学研究;AI追踪心脏血流

1,Nature Medicine重磅突破,报道迄今为止最大规模的阿尔兹海默症蛋白组学研究来源:精准医学与蛋白组学蛋白组学揭示衰老与AD的关联4月13日, Allan I. Levey教授及其合作者再次在国际专业学术期刊Nature Medicine (IF =30.641)发表了最新研究成果,报道了迄今为止最大的阿兹海默症相关蛋白质组学研究。研究人员运用蛋白质组学技术、共表达网络分析、和靶向蛋白质组技术(PRM)对健康人和患有阿兹海默症患者的2,000多个人脑组织样本和近400个脑脊液样本进行系统分析,研究确定了反映大脑生物过程的关键蛋白质共表达网络,为阿尔兹海默症的临床诊治提供了新的治疗靶标和生物标志物。2,Nat Neurosci | 渐冻症和额颞叶痴呆患者中C9ORF72蛋白功能缺失和获得性毒性的协同致病机制来源:BioArt肌萎缩性侧索硬化症(ALS)也称渐冻症,是进程迅速、致死率高的运动神经元疾病。额颞叶痴呆(FTD)属于第二大家族遗传性认知障碍,主要影响人格、社会行为和语言功能。研究表明,在许多ALS和FTD患者中都存在六碱基(GGGGCC)重复序列扩增变异。这个独特的重复序列扩增发生于一个之前未被详细研究过的9号染色体ORF72位点基因(C9orf72)的非编码区,是迄今为止最常见的家族性ALS和FTD的致病因素。根据病人的临床病理数据,可能的C9orf72基因突变的致病机制主要包括C9ORF72蛋白功能缺失 (loss of function)和获得性毒性(gain of toxicity),后者来源于包含重复序列的C9orf72 RNA及其二肽重复蛋白(dipeptide repeat proteins, DPRs)。4月13日,加州大学圣地亚哥分校路德维格研究所Don Cleveland团队在Nature Neuroscience杂志上发表题为“Reced C9ORF72 function exacerbates gain-of-toxicity from ALS/FTD-causing repeat expansion in C9orf72” 的研究论文,证明了在ALS和FTD中,C9ORF72蛋白功能缺失会进一步加剧C9orf72重复序列的毒性。3,AI追踪心脏血流 |《自然-机器智能》来源:Nature自然科研《自然-机器智能》发表的一篇论文Deep variational network for rapid 4D flow MRI reconstruction 介绍了一种人工智能(AI)系统可以加速对心血管血流的扫描。这个深度学习模型有望让临床医师在患者接受核磁共振扫描的同时,实时观察血流变化,从而优化诊断工作流。这个AI系统还能在20秒左右的时间里重建一次扫描,比目前尖端的传统方法快30倍,比之前的深度学习方法快4.2倍。4,抑郁症研究重大进展——关键蛋白质的鉴定可能带来更有效的抗抑郁药物来源:大话精神最近发表在《自然通讯》(Nature Communication)杂志上的一篇论文强烈建议,一种特殊的蛋白质——GPR56——与抑郁症的生物学和抗抑郁药物的作用有关。研究小组相信,这种蛋白质可以为新的抗抑郁药物提供一个新的靶点。这项研究由麦吉尔大学的Gustavo Turecki教授和道格拉斯精神健康大学研究牵头。在小鼠试验中,结果显示了慢性应激诱导的GPR56在血液和前额叶皮层(PFC)中下调,伴随着抑郁样行为,并且可以通过抗抑郁药逆转。小鼠PFC中GPR56的下调与抑郁样行为,执行功能障碍和对抗抑郁药治疗无应答有关。GPR56肽激动剂具有抗抑郁样作用,可上调AKT/GSK3/EIF4通路。该发现揭示了GPR56在抗抑郁反应中的潜在作用。5,超1/3新冠患者有神经系统症状,武汉协和医院团队JAMA子刊发文提醒来源:医学新视点除了对眼部感染和胃肠道症状的发现讨论,华中科技大学同济医学院附属协和医院团队近日报告了新冠病毒相关的三大类神经系统表现,常见表现有头晕、头痛、味觉障碍、嗅觉障碍、肌肉损伤等,重症患者甚至会出现中风和意识障碍。而且,部分患者没有其他典型首发症状。研究发表于《美国医学会杂志-神经病学》。在同期发表的社论中,加州大学旧金山分校神经科学教授Sam Pleasure博士和该期刊的两位编辑称赞,“虽然全面了解COVID-19的神经系统疾病谱还需要大量知识和数据,但这项研究打开了一扇窗户,提醒新冠大流行的一线诊治需要关注神经系统。”6,Nature Biotechnology: EEG特征预测重度抑郁症的抗抑郁药反应来源:思影科技华南理工大学和斯坦福大学研究人员在Nature Biotechnology杂志发表文章,试图识别抗抑郁药治疗反应的神经生物学特征(与安慰剂相比)。本研究开发了一个适用于静息态EEG(rsEEG)的潜在空间机器学习算法(latent-space machine-learning algorithm),并将其应用到安慰剂-对照抗抑郁药研究的数据中(n=309)。抗抑郁药舍曲林rsEEG模型(与安慰剂相比)可以稳健预测症状改善,并且应用于不同的研究地点和EEG设备上。这种舍曲林-预测的EEG特征可推广到另外两个抑郁样本,它反映了普遍的抗抑郁药物反应,并与rTMS治疗结果有相关。此外,通过同步TMS和EEG测量,研究者发现舍曲林rsEEG特征表征前额叶的神经反应。该研究通过EEG计算模型促进了对抗抑郁药治疗的神经生物学理解,并为抑郁症的个性化治疗提供了临床手段。7,Neurocase:冥想竟然可以延缓衰老!来源:转化医学来自威斯康星大学麦迪逊分校(University of Wisconsin-Madison)和哈佛医学院(Harvard Medical School)的一组研究人员发现,有证据表明,每天冥想可能会延缓大脑衰老。在他们发表在《Neurocase》杂志上的论文中,该小组描述了他们对一名每天冥想的佛教僧侣的研究,以及他们从他身上学到了什么。前文阅读1,脑科学日报|多动症孩子为何睡不好?针灸可以缓解偏头痛2,脑科学日报|超声波助力老年痴呆治疗;5-羟色胺平衡大脑内部交流

大魔神

Cell|高精度蛋白质组学方法,揭示黑色素瘤抵抗免疫治疗机制

前言特拉维夫大学Tamar Geiger(Tamar Geiger课题组一直致力于使用高精度质谱的方法鉴定肿瘤治疗的潜在靶点)教授团队和Sheba医疗中心的Gal Markel团队合作在Cell发表的题为“Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence”的研究成果,通过蛋白质组学技术和功能验证,发现了黑色素瘤细胞的代谢状态通过抗原呈递机制的内在变化和肿瘤微环境的外在变化影响了T细胞杀伤,揭示了黑色素瘤代谢状态与免疫治疗响应之间的关联,这可能有助于将来改善免疫治疗响应。中文标题:黑色素瘤对免疫治疗响应的蛋白质组学研究揭示线粒体依赖性研究对象:黑色素瘤发表期刊:Cell影响因子:38.637运用生物技术:蛋白质组学研究背景免疫疗法彻底改变了转移性黑色素瘤患者的治疗方法,极大地提高了患者的生存率。迄今为止,这种成功很大程度上归因于黑色素瘤的高突变负荷。目前,免疫检查点抑制剂(ICIs)被认为是黑色素瘤免疫治疗的主要手段,尤其是针对CTLA-4或PD1免疫检查点的抗体,但约有50%患者对治疗无反应。肿瘤浸润淋巴细胞(TIL)的过继细胞疗法(ACT)是一种不同的免疫治疗策略,在黑色素瘤治疗中显示出很高的疗效。当前人们已投入大量精力来确定预测性反应指标和揭示耐药机制,但主要是使用组织学、基因组学和转录组学方法,尚还缺少对黑色素瘤进行深入的蛋白质组学分析。研究思路研究结果1.黑色素瘤对TIL和抗PD1响应的蛋白质组学分析为了鉴定与免疫治疗响应相关的蛋白质网络,作者收集了116个IV期黑色素瘤样本,包括42例接受TIL治疗的患者和74例接受抗PD1治疗的患者,并进行了蛋白质组分析。作者将每个队列分为响应组(包括部分响应者和完全响应者;n = 61)和无响应组(进行性疾病;n = 48)。PD1队列包括其他疾病稳定的患者(n = 7)(图1A)。对患者临床参数的检查表明,响应者和无响应者在总体生存率上存在显著差异(图1B)。年龄和BRAF突变状态在两组之间均无显著差异。此外,先前的靶向治疗(n = 16)或抗CTLA-4(n = 29)治疗均未显示出与响应相关。在TIL队列中发现性别之间存在显著相关性,并且在响应者中血浆LDH水平低于两个队列中的非响应者(p值<0.005;卡方检验)。对于蛋白质组学分析,作者解剖了>80%肿瘤细胞的黑色素瘤区域。为了获得准确的蛋白质组定量,作者设计了一种super-SILAC混合物,该混合物由5种SILAC标记的黑色素瘤细胞系组成,可作为标准化的参考。然后将混合物以1:1的蛋白质比例掺入每个黑色素瘤样品中,以用作定量参考。混合的蛋白裂解液经酶切和分馏后,用Q-Exactive Plus或HF质谱仪进行检测(图1C)。结果共定量到10,376种蛋白质,响应者和非响应者之间的覆盖范围没有明显差异(图1D-1E)。进一步过滤保留至少70%的样品中鉴定出的蛋白质,这些蛋白中包括800多种与信号转导相关的蛋白以及数十种受体和转录因子相关的蛋白,表明它们足以覆盖细胞内过程的分析。图1 | 黑色素瘤对免疫治疗响应的蛋白质组学2.免疫疗法响应者和无响应者的功能分析作者通过Student t检验在TIL治疗和抗PD1治疗人群中分别鉴定了414和636个响应者和无响应者间的差异表达蛋白。通路Proteomaps基于KEGG注释对两组差异蛋白进行聚类,发现两种治疗方法的图谱有惊人的相似之处(图2A)。在这两种治疗方法下,响应组均以较高水平的代谢蛋白为主,而非响应组则为剪接体和RNA代谢相关蛋白为主。除代谢类别外,两种治疗方法的响应组均具有更高比例的抗原呈递以及信号传导相关蛋白。与两种疗法之间的通路高度相似性相一致,二维注释富集分析结果表明两种疗法富集类别有着高相关性(R = 0.76)。在这两种治疗中,响应组的线粒体代谢通路都显著富集(图2B)。鉴于两种疗法的响应组谱图在功能上相似,作者使用所有116例样本的数据集,进行了WGCNA分析。结果中得到了一组与患者无进展生存期,完全或部分响应以及血浆LDH水平呈正相关的模块。与之前的结果一致,这些模块富集到了抗原呈递,IFNG信号以及线粒体代谢通路(图2C)。总而言之,这些分析强调了线粒体代谢的差异通常与免疫治疗反应相关。图2 | 免疫疗法响应者和无响应者间的功能差异3.鉴定免疫治疗响应的蛋白质标志物为了鉴定与响应有关的特征蛋白,作者使用基于SVM的分类方法(基于ANOVA的特征排序),在TIL治疗队列筛选出8个特征蛋白,其中6个在响应组中上调,2个下调(图3A)。在抗PD1治疗队列中筛选出15种特征蛋白,所有特征蛋白均在响应组上调(图3B)。两组特征蛋白没有重叠,TIL治疗队列包括与脂肪酸和酮体代谢有关的蛋白质,抗PD1治疗特征蛋白由多种抗原呈递相关蛋白组成。统计分析表明抗PD1队列的15种特征蛋白质中,有12种具有统计学意义(图3C)。总体而言,作者在抗PD1治疗队列中发现了95种显著变化的蛋白质,其中83种在响应组中上调。由于TIL队列较小,因此没有显著变化的蛋白质。为了提高分析的统计能力,作者合并了两个队列,发现响应者和非响应者之间有160种显著变化的蛋白质(图3D)。图3 | 响应于免疫治疗的特征蛋白构建响应蛋白的相互作用网络得到两个高度连接的蛋白簇。第一个蛋白簇富集了IFN,抗原加工和呈递机制蛋白。第二个蛋白簇富集了参与脂质代谢和TCA循环的线粒体代谢酶(图4A–4C)。因此,尽管蛋白不一定在两种治疗情况下都能预测反应,但线粒体-IFN网络与两种治疗都相关。TIL队列中六个上调的特征蛋白在抗PD1队列中也上调(图4D)。类似地,抗PD1队列的15种特征蛋白中的10种在TIL队列中也显示出相似的趋势。重要的是,TIL响应组中MHC相关蛋白和抗原呈递机制蛋白均高于无响应组(图4E)。接下来,作者分析了特征蛋白与无进展生存期(PFS)的关系。Kaplan Meier分析显示在TIL队列中,ACAT1,SUPV3L1和HTATIP2的高表达与更长的PFS正相关(图4F)。在抗PD1队列中,大多数特征蛋白与更长的PFS显著相关。对每个特征蛋白在另一个队列中的分析表明,它们几乎与存活率无关(图4F)。图4 | 免疫治疗响应的综合分析蛋白质组学结果将黑色素瘤的代谢状态与抗原呈递和IFN信号传导相关联。鉴于这些分析可能已平均了来自不同细胞群体的信号,作者通过连续切片的免疫组化检查了关键特征蛋白在组织水平上的空间表达。免疫组化结果与蛋白质组学数据一致,这些蛋白在响应组和非响应组间的表达有着显著差异,并且这些蛋白是在黑色素瘤细胞中特异性染色(图5A和5B)。线粒体标志物和电子传输链(ETC)组分SDHA的染色在响应组的线粒体中显著增加(图5C)。作者接着检查了代谢蛋白表达与T细胞浸润之间的关联(图5C和5D)。与这些患者中更高的疗效相一致,作者发现CD8或CD3 T细胞染色与特征蛋白ACOT1,ACAT1和HADHA之间具有高度相关性(图5C)。总而言之,这些结果证明肿瘤线粒体代谢与细胞免疫原性之间存在明确的联系,这值得进行下游功能研究。图5 | 代谢蛋白和T细胞浸润的组织水平验证4. 黑色素瘤细胞免疫原性代谢调控的功能验证除了代谢特征和免疫响应之间的相关性之外,作者考虑线粒体代谢是否在增加肿瘤免疫原性方面具有功能性作用。为了诱导增加培养细胞的线粒体呼吸,作者用丙酮酸脱氢酶激酶的抑制剂二氯乙酸(DCA)处理了四种黑色素瘤细胞系,这增加了进入线粒体的碳通量。经DCA处理的细胞蛋白质组学分析显示,涉及抗原呈递的多种蛋白质表达增加(图6A)。在MHC I类蛋白中,大多数DCA处理后的黑色素瘤细胞系中HLA-A表达略有降低,而HLA-B和HLA-C显著升高,并且主要的抗原呈递因子TAP1,TAP2和B2M在不同的细胞系中显示出不同的行为。根据蛋白质组学结果,作者发现DCA处理可增加细胞表面HLA的表达,并增加mRNA表达水平(图6B-6D)。这些结果表明代谢状态不仅与治疗的响应相关,而且在增加总体抗原呈递方面具有调节作用。为了直接在特征蛋白和抗原呈递之间建立联系,作者使用了CRISPR-Cas9系统在WM266-4和Mel526黑色素瘤细胞系中敲除了两个TIL特征基因ACAT1和HADHA。此外,在同种细胞中敲除了脂肪酸氧化的主要调节剂CPT1A。蛋白质组学分析显示,与敲除细胞相比,对照组中的抗原呈递和IFN信号以及氧化磷酸化和电子传递链过程显著富集(图6E)。对基因扰动的下游影响的研究表明,在Mel526细胞中敲除ACAT1,HADHA或CPT1A后,MHC I类强度降低,HLA II类呈递细胞百分比降低(图6F,6G)。蛋白质组学分析进一步验证了这些结果,并显示了其他关键抗原呈递机制蛋白在两组间具有更高的比值(图6H)。这些结果表明,即使是TIL特征蛋白中的单个线粒体蛋白也可以影响抗原呈递机制和MHC I类表达。图6 | 抗原呈递的代谢控制代谢对抗原呈递的作用说明这些可能影响T细胞识别和肿瘤细胞杀伤。为了检验这一假设,作者将敲除组或对照组黑色素瘤细胞与匹配的T细胞共培养,并通过LDH分泌监测细胞死亡。与抗原呈递机制蛋白下调相一致,在ACAT1,HADHA和CPT1A敲除后,特异性T细胞的杀伤力明显降低(图7A)。为了通过体内小鼠模型检查这些效应,作者敲除了小鼠黑色素瘤细胞系YUMMER1.7中的Acat1,并监测其对免疫活性小鼠的肿瘤生长和免疫浸润的影响。结果表明敲除Acat1后肿瘤生长显著增加(图7B)。基于体外观察结果,作者假设敲除Acat1减少了T细胞识别,从而促进了肿瘤的进展。实际上,敲除Acat1的肿瘤细胞在RNA和蛋白质水平上均显示MHC I类和PD1配体(Pdl1)表达的显著降低(图7C–7F)。此外,与IFNG一起孵育24小时后,敲除细胞显示出对MHC I类,Pdl1和B2m的诱导作用降低(图7G)。免疫细胞谱分析显示,与对照相比,敲除Acat1的肿瘤中细胞因子产生的T细胞(cytokine-procing T cells)水平较低(图7H和7I),而浸润CD4 +和CD8 + T细胞的总百分比没有变化(图7I-7L)。此外,敲除Acat1的肿瘤中单核细胞髓样细胞(monocytic myeloid cells)的比例显著低于对照(图7M),而巨噬细胞的比例显著上升(图7N)。总的来说,这些结果说明了这些蛋白质作为影响黑色素瘤和免疫细胞调节剂的重要性。图7 | CRISPR敲除对肿瘤免疫原性和T细胞活性的影响研究结论免疫疗法彻底改变了癌症的治疗方法,但是大多数患者没有响应。本文通过蛋白质组学研究来自肿瘤浸润淋巴细胞(TIL)治疗或抗PD1免疫治疗的晚期黑色素瘤患者的临床样品。统计分析表明在两种治疗中,响应组的氧化磷酸化和脂质代谢均高于非响应组。为了阐明代谢状态对免疫响应的影响,作者在代谢扰动或CRISPR-Cas9敲除后检查了黑色素瘤细胞。这些实验结果表明脂质代谢是通过提高抗原呈递而增加黑素瘤免疫原性,从而增加了对T细胞杀伤的敏感性。总的来说,蛋白质组学分析揭示了黑色素瘤代谢状态与免疫治疗响应之间的关联,这可能有助于将来改善治疗响应。小鹿推荐本文作者通过对两种免疫疗法患者组织样本的蛋白质组学分析,提出黑色素瘤细胞的代谢状态通过抗原呈递机制的内在变化和肿瘤微环境的外在变化来影响T细胞杀伤。这些结果为复杂的免疫代谢网络增加了新的认知,这可能具有重要的治疗意义。蛋白质组学在肿瘤研究领域进展迅猛,已有多种肿瘤的研究成果发表于顶级学术期刊。本文也又一次证明了蛋白质组学在生命科研领域研究中的重要作用。鹿明生物上海鹿明生物科技有限公司,一直专注于生命科学和生命技术领域,是国内早期开展以蛋白组和代谢组为基础的多层组学整合实验与分析的团队。经过近数年的发展沉淀,公司建立起了iTRAQ/TMT、4D-DIA、4D-PRM、修饰蛋白组学等蛋白组学技术平台,同时为加强学术交流,鹿明生物公众号也会一直为各位老师分享更多科研干货,欢迎关注鹿明生物官微哦~~猜你还想看◆蛋白质组学前处理方法大揭秘!学会了这几招之后“包治百病”~◆盘点 | 医学方向2020年度最佳项目文章TOP5,总影响因子:61.414◆跨年项目文章 | 两篇连发~转录组+蛋白组学对水生生物中纳米塑料毒性机理研究◆项目文章 | iTRAQ定量蛋白组学助力南京农大茶树抗寒机制研究END文章来源于鹿明生物

春雨日时

活细胞中蛋白质相互作用研究取得进展

近日,中国科学院上海药物研究所陈小华课题组和中国科学院成都生物研究所唐卓课题组合作,基于开发新的非天然氨基酸,发展了一种能够在活细胞中捕捉蛋白质相互作用的新技术,该方法兼具时空可分辨和交联位点选择性的优势。研究成果“Genetically Encoded Resie-Selective Photo-Crosslinker to Capture Protein-Protein Interactions in Living Cells”在线发表于Cell出版社子刊Chem 杂志。蛋白质相互作用在生命活动中扮演非常重要的角色,发现蛋白质新的相互作用或功能将有助于阐明特定生命过程,为相关疾病的治疗提供理论基础。然而蛋白质相互作用网络十分复杂,在活体条件下开展蛋白质相互作用研究非常具有挑战性。基于基因密码子拓展技术,在活体细胞的目标蛋白质中定点引入具有共价交联活性的非天然氨基酸,已经成为活细胞内研究蛋白质-蛋白质相互作用的有力工具。研究团队针对现有非选择性的蛋白质交联技术产生的交联肽段结构复杂、质谱数据难以解析、假阳性高等关键问题,发展了一种时空可分辨的残基选择性(resie-selective)共价交联新方法,成功实现了在活细胞中对相互作用的蛋白质复合物的有效捕捉及后续质谱的分析。通过对多种相互作用蛋白质(如乙酰化酶与底物)的研究,该技术可以捕捉活细胞中微弱的蛋白质相互作用;其获得蛋白质的交联肽段可以很大程度上简化质谱的分析、作为确定蛋白质相互作用的直接证据、确定相互作用的界面以及验证酶与特定底物的相互作用。该方法在一定程度上突破了传统蛋白质相互作用分析、发现方法的瓶颈,有望被广泛用于传统方法难以发现的活细胞中微弱的、瞬间的或呈动态作用方式的蛋白相互作用的研究。陈小华、唐卓为论文的共同通讯作者,陈小华课题组胡伟为该论文第一作者;上海药物所谭敏佳课题组参与此项工作。该研究得到上海药物所质谱技术服务部的支持,该项目得到国家自然科学基金委、中科院、上海市科委项目的资助。具有时空可分辨的捕捉活细胞中蛋白质相互作用技术示意图中国生物技术网诚邀生物领域科学家在我们的平台上,发表和介绍国内外原创的科研成果。注:国内为原创研究成果或评论、综述,国际为在线发表一个月内的最新成果或综述,字数500字以上,并请提供至少一张图片。投稿者,请将文章发送至weixin@im.ac.cn。近期热文直接点击文字即可浏览!1、补牙或将成为历史?2、科学你慢慢学,中医我先治病去了3、科学告诉你应该多久洗一次澡4、新证据:喝咖啡能延长寿命!5、据说,这是生物医学硕士博士生的真实的生活写照6、一顿早餐到底有多重要?7、情商也是把双刃剑!高情商或让你更脆弱8、施一公:压死骆驼的最后一根稻草,是鼓励科学家创业!9、“科学禁食法”真能降低重大疾病风险10、睡眠科学家揭示出8种睡好觉的秘诀11、有志者事竟成!2型糖尿病成功被逆转12、每周两半小时,任何形式的锻炼都可以使你更长寿13、喝醉以后,你以为睡一觉就没事儿了?!14、仰卧起坐等或将成为延寿运动?15、冥想、瑜伽、太极等不仅能够改善身心健康...

公益心

一探前沿|全球组学大咖新进展,赛默飞Orbitrap助力顶级科研

关注我们,更多干货和惊喜好礼李宇翔 杨湘云Orbitrap自发明起,就一直是科学家实现世界顶级科研突破的有力伙伴。今天就让我们来一探全球顶尖PI发表的文章和技术成果,看看Orbitrap技术是如何助力顶级科研的Matthias Mann:基于Orbitrap的全新方法学研究,创新开发BoxCar数据采集方式为了应对蛋白质组学中的动态范围挑战,Mann Lab最近开发了 “BoxCar”的数据采集方法(Meier et al., Nat. Methods, 2018),这显著提高动态范围大的样本中的蛋白鉴定深度,例如血浆或组织样本(Geyer et al., Cell Syst., 2018, Doll et al., Nat Commun., 2017)。Orbitrap质谱仪在灵敏度和采集速度方面取得了很大进展,使蛋白质组覆盖深度范围越来越广。然而,这些进展主要局限于MS水平,而用于MS扫描的离子采集仍然非常低效。Mann Lab介绍了一种数据采集方法,称为boxcar,一级全扫时采用分段累积的方法,使得平均离子注入时间相较标准全扫描增加10倍以上。对一个人类癌细胞系进行1h分析,该方法鉴定到之前在24个组分中鉴定到的90%以上的蛋白质,并且定量到了6200多个蛋白。在小鼠脑组织中,仅在100 min内就检测到超过10000种蛋白质,并将灵敏度扩展到低阿摩尔级。Thermo Scientific Orbitrap Eclipse三合一质谱平台Matthias Mann:多组学研究进展,为建立调控潜能性状态转变的模型机制奠定了基础多潜能干细胞是高度动态且持续进展的,多潜能性的nave和primed两种状态之前已经有深入报道,但是对于两种状态之间的转换过程的研究,却仍然是不完整的。文章剖析了胚胎从着床前到着床后胚层分化的多能态转变动力学,通过对蛋白质组、磷酸化蛋白质组、转录组和基因组的综合分析,发现磷酸化蛋白质组的快速、急性和广泛变化等特点,先于基因组、转录组和蛋白质组的有序变化。文章奠定了调控潜能性状态转变模型的基础,对多潜能性的多层控制提出了全新见解。Matthias Mann:蛋白质组学助力卵巢癌标志物新靶点发现该篇发表在Nature上的文章介绍了一种全新技术:通过将激光捕获显微切割技术与基于Orbitrap的高灵敏蛋白质组分析技术相结合,从11位高级别浆液性卵巢癌(HGSC)病人石蜡包埋组织中提取了107个癌症与基质细胞,随后进行蛋白质组分析, 指出与肿瘤转移密切相关的成纤维细胞(cancer-associated fibroblast,CAF)中调控蛋白N-甲基转移酶(N-methyltransferase(NNMT))是卵巢癌发生、发展以及转移的关键调控因子,可能成为全新治疗靶点,未来同样可能为造福HGSC病人的福音。此研究基于Q Exactive 和Q Exactive HFOliver Fiehn:非靶向代谢组学中质谱结构注释有所突破尿液代谢物经常被用于许多临床和生物医学研究,但通常仅限于少数经典化合物。其实,代谢组学分析可以检测到更多的代谢信号,可以用来精确定义个人的健康状况。然而,许多化合物仍然未被鉴定,妨碍了得出相关生物化学结论。在这篇文章中,Fiehn Lab用基于HILIC-Q Exactive HF 质谱和 C18-Q Exactive HF两种非靶向代谢组学分析方法,检测到的所有代谢物。检测到9000多种代谢物,其中42%的化合物有MS/MS信息。采用标准品经过精确质量数、保留时间和二级信息鉴定了175种化合物。用一级和二级信息,鉴定到另外578个化合物。Steven Gygi:FAIMS方法的多重定量表征与优化在定量蛋白质组学中,同位素标记法是提高蛋白组定量通量、精确度的有力技术。然而,定量的动态范围和准确度可能会因标记肽段共隔离的限制,致使肽段释放的报告离子被合并定量。通常采用在线或离线过滤的方式来减轻共隔离的干扰,但是往往会导致蛋白质和肽段鉴定的缺失。为了解决这一问题,本文提出了一种高场非对称波形离子迁移质谱(FAIMS)方法,可以减少前体离子共流出、提高多重定量准确度和动态范围。在不牺牲蛋白质鉴定数量的前提下,FAIMS有力地提高了基于高分辨率MS(HRMS)和SPS-MS的定量准确度。经过进一步优化条件,使FAIMS更加稳健并提供参考方法,推动FAIMS进一步提升同位素标记定量的能力。全新的Thermo ScientificFAIMS Pro接口Bing Zhang:结合蛋白基因组与修饰蛋白组学研究,全面剖析结肠癌蛋白基因组学 (Proteogenomics) 是利用蛋白质组学数据,尤其是高精度的串联质谱数据, 结合基因组和转录组数据对基因组进行注释。除此之外,蛋白质组数据还能系统发现蛋白质特有的翻译后修饰、可变剪接等信息。Orbitrap质谱兼具高精度、高灵敏度和高稳定性等优势,可为研究人员提供强有力的生物质谱技术,已然成为蛋白基因组学研究不可或缺的一部分。本项研究中,研究人员收集了110例结肠癌样本。研究通过对来自110个结肠癌病人的肿瘤样本、临近正常组织(NATs)和血液样本,进行蛋白质组学、全外显子测序、RNA-seq、miRNA-seq研究。为了进一步探究肿瘤和正常组织中的蛋白质组差异,作者还结合TMT标记定量和磷酸化蛋白质组分析,总结肿瘤的临床和病理特征。研究证实,这些基因变异确实伴随着蛋白质组/磷酸化蛋白质组学的变化。研究人员利用基因组、蛋白组和修饰组学相结合的分析策略,首次对结肠癌的蛋白基因组进行了全面的剖析,为结肠癌研究提供了新的研究思路。随着组学研究的不断深入,质谱技术,尤其是高分辨质谱技术能够助力顶级PI在方法学研究、技术突破、精准医疗等各个领域取得新进展。Orbitrap自发明以来,有越来越多不断探索技术极限的科学家,选择Orbitrap成为研究之路上的伙伴;随着时间的推移,正是越来越多科学家的认可,造就了Orbitrap如今组学研究领域金标准的地位,也成为顶尖PI创新研究的共同选择。希望下个20年,Orbitrap能为科学家们带来更具创新性、更突破极限的助力,一起携手,让世界更健康、更清洁、更安全。参考文献:[1] BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nature Methods. 2018.[2] Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems. 2019.[3] Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Cell Systems. 2019.[4] Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019.[5] Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Anal Chem. 2019.[6]. Vasaikar S, Huang C, Wang X, et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell. 2019赛默飞Orbitrap Eclipse三合一超高分辨质谱仪解决方案如需合作转载本文,请文末留言。

空瓶子

2019年10月CRISPR/Cas最新研究进展

基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。图片来自Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。即将过去的10月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。1.Mol Cell:基因编辑大牛张锋新力作!利用Cas13开发出经编程后杀死人细胞中RNA病毒的新技术---CARVERdoi:10.1016/j.molcel.2019.09.013世界上许多最常见或致命的人类病原体都是RNA病毒,比如埃博拉病毒、寨卡病毒和流感病毒,并且大多数都没有美国食品药品管理局(FDA)批准的治疗方法。在一项新的研究中,来自美国麻省理工学院、哈佛大学和布罗德研究所等研究机构的研究人员将一种CRISPR RNA切割酶转变为一种经编程后检测和破坏人细胞中RNA病毒的抗病毒剂。相关研究结果于2019年10月10日在线发表在Molecular Cell期刊上,论文标题为“Programmable Inhibition and Detection of RNA Viruses Using Cas13”。图片来自Mulepati, S., Bailey, S.; Astrojan/Wikipedia/ CC BY 3.0。人们此前已将Cas13酶用作一种切割和编辑人类RNA的工具,并且将它用作一种检测病毒、细菌或其他靶标存在的诊断试剂。这项新的研究是首批利用Cas13或任何CRISPR系统作为体外培养的人细胞中的一种抗病毒剂的研究之一。这些研究人员将Cas13的抗病毒活性及其诊断能力结合在一起,构建出一种有朝一日可能用于诊断和治疗病毒感染的系统。他们的系统称为CARVER(Cas13-Assisted Restriction of Viral Expression and Readout)。布罗德研究所成员Pardis Sabeti说:“人类病毒病原体极其多样化,不断地适应它们所在的环境,即便在单一病毒种类中也是如此,这既强调了所面临的挑战,也强调了开发灵活抗病毒平台的必要性。我们的研究将CARVER确立为一种强大且可快速编程的诊断和抗病毒技术,可用于各种各样的病毒。”2.Cell:首次发现针对III型CRISPR-Cas系统的蛋白抑制剂doi:10.1016/j.cell.2019.09.003在一项新的研究中,来自丹麦哥本哈根大学的研究人员发现一种针对III型CRISPR/Cas系统的抑制剂--- AcrIIIB1,它是由硫化叶菌病毒(Sulfolobus virus)SIRV2编码的。AcrIIIB1仅抑制由辅助蛋白Csx1的RNase活性介导的III-B CRISPR/Cas免疫反应。相关研究结果发表在2019年10月3日的Cell期刊上,论文标题为“Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein”。这些研究人员发现AcrIIIB1似乎并不结合Csx1,但是与两种不同的III-B效应复合物--- Cmr-α和Cmr-γ相互作用。当结合前间隔序列转录本时,这两种III-B效应复合物合成环化寡腺苷酸(cyclic oligoadenylate, cOA),所产生的cOA激活Csx1的RNase活性。综上所述,这些研究人员推断AcrIIIB1通过干扰一种Csx1 RNase相关过程来抑制III-B CRISPR/Cas免疫反应。3.NEJM:世界首例!中国科学家找到治疗艾滋病和白血病新方法!doi:10.1056/NEJMoa1817426近日,一项刊登在国际杂志The New England Journal of Medicine上的研究报告中,来自北京大学-清华大学生命科学联合中心邓宏魁研究组、解放军总医院第五医学中心陈虎研究组及首都医科大学附属北京佑安医院吴昊研究组的研究人员通过联合研究发表了题为“CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia”(利用CRISPR基因编辑的成体造血干细胞在患有艾滋病合并急性淋巴细胞白血病患者中的长期重建)的研究论文,这项研究成果标志着世界上首例通过基因编辑干细胞治疗艾滋病和白血病患者的案例由我国科学家成功完成了!图片来源:Lei Xu et al. N Engl J Med 2019 DOI:10.1056/NEJMoa1817426。我们都知道,如今CRISPR-Cas9基因编辑工具对哺乳动物细胞的基因组进行编辑已经被广泛使用了,该技术展现出了潜在的临床使用前途,而且目前研究人员已经开始利用该技术来探寻基于CRISPR的疗法治疗人类疾病的安全性和可行性。CCR5是HIV-1感染人体的一个保护性靶点,CCR5缺失的血细胞常常对HIV-1的感染有很大的抵抗力;有研究表明,当将携带天然CCR5突变的造血干细胞和祖细胞(HSPCs,hematopoietic stem and progenitor cells,造血干祖细胞)进行同种异体移植后(allogeneic transplantation)就能长期根除HIV-1,因为CCR5是HIV进入机体的关键共受体,这些事例或许就增加了一种可能性,即移植携带人工破坏CCR5的细胞或能作为一种新方法来制造对HIV-1感染耐受的细胞。中国科学家的这项最新研究描述了同种异体干细胞移植后CCR5 CRISPR基因编辑的CD34+细胞的长期移植状况,其对循环骨髓细胞基因组的基因干扰比率不到8%,而且并不存在基因编辑的脱靶效应。这项长达多年的工作目前已经初步证实了基因编辑造血干细胞在临床应用中的可行性与安全性,未来将会促进和推动该技术的临床应用。未来研究人员将会继续深入研究通过各种方法来优化基因编辑造血干细胞移植方案,从而降低脱靶率,实现100%的CCR5的敲除效率。4.Nature:细菌生物多样性促进“噬菌体耐受性”定向进化doi:10.1038/s41586-019-1662-9新的研究表明,在自然环境中(非实验室条件下)细菌可以通过演化产生对噬菌体感染的抵抗力。来自Exeter大学的研究者们调查了为什么铜绿假单胞菌在实验室和自然界中会以不同的方式产生对噬菌体的抗性。在实验室中,细菌的突变往往会导致噬菌体感染所依赖的附着受体的缺陷。而在自然环境中,细菌倾向于使用被称为CRISPR-Cas的免疫机制产生抵抗力。虽然该研究仍旧是在实验室中进行的,但是通过将铜绿假单胞菌与其它类型的细菌混合培养用以模拟“自然条件”,研究人员表明,这种额外的“生物复杂性”有助于平衡基于CRISPR的噬菌体耐受性。研究者们发现,与失去噬菌体受体的进化不同,这种基于CRISPR的噬菌体抗性不会降低细菌的毒力。“当我们引入生物多样性时,细菌更偏向于基于CRISPR的进化,”该研究的主要作者Ellinor Alseth说:“在自然的环境中,失去表面受体(噬菌体所附着的)是有代价的,因为该分子对于细菌本身可能还具有其它功能。如果丧失这种表面受体,那么与其他种类的细菌相比,突变菌的竞争力将会变低,从而不适于生存。因此,在更复杂的,更'自然'的环境中,基于CRISPR的抗性受到细菌的青睐。”5.Nature:新一代CRISPR基因编辑技术诞生,或为人体细胞提供多种功能doi:10.1038/s41586-019-1711-4近日,来自美国布罗德研究所的科学家们通开发了一种新的CRISPR基因组编辑方法,能够进一步提高基因编辑的效率与准确性。该系统称为“prime editing”,能够以精确,高效和高度通用的方式直接编辑人体细胞。该方法扩大了生物学和治疗学研究的基因编辑范围,并有可能校正多达89%的已知致病基因变异。相关结果发表在最近的《Nature》杂志上。该研究第一作者为Andrew Anzalone。图片来源:Www.pixabay.com。“prime editing”不同于以前的基因组编辑系统。Cas9蛋白是最早在人类细胞中进行基因组编辑的CRISPR工具,它是由布罗德研究所,麻省理工学院和哈佛大学率先开发。Cas9能够切割DNA链,从而可以在特定位置破坏靶基因,然后通过将新的DNA重组到靶位点而添加新的序列。这项由Liu等人开发的“prime editing”工具,是在原有CRISPR-Cas9技术的基础上将Cas9进一步融合到另外一个蛋白质上。后者可以进行特殊的生化反应,将一个DNA碱基进行转换。目前开发出的蛋白质可以有效地进行四种类型的碱基转换:C到T,T到C,A到G和G到A。该编辑系统的另一大特色是将Cas9与另一种称为逆转录酶的蛋白质偶联。该复合物将目标DNA区域的其中一条链变为“prime”链,从而能够定向地进行基因序列编辑。这些作者使用了一种新型的工程化sgRNA,称为pegRNA,可将“prime editing”工具引导至其靶位点,在该位点,经过修饰的Cas9会切割DNA的一条链。 pegRNA还包含能够编码新序列的RNA片段。逆转录酶元件通过读取RNA信息并将相应的DNA“写入”靶点区域。在《自然》杂志的论文中,研究小组证明了prime editing技术能够通过基因编辑的方式准确校正导致镰状细胞性贫血的基因变异。“通过初步编辑,我们现在可以将镰状细胞贫血突变直接改回正常序列,并去除引起泰-萨克斯病(Tay Sachs disease)的四个额外的DNA碱基,而无需完全切割DNA或需要DNA模板,” Liu说:“该系统的优点在于对编辑的序列几乎没有限制。由于添加的核苷酸由pegRNA指定,因此它们与prime链即使仅仅只有一个碱基的差异,也能够做到准确识别。”6.Nat Immunol:突破!新型系统或能帮助机体免疫系统有效寻找并杀灭隐藏的癌细胞!doi:10.1038/s41590-019-0500-4癌细胞往往是躲避宿主机体检测的“大师”;近日,一项刊登在国际杂志Nature Immunology上的研究报告中,来自耶鲁大学的科学家们通过研究开发了一种新系统,其能够帮助寻找隐藏的癌细胞,促进机体免疫系统定位并清除免疫疗法后遗漏的癌细胞。这种新系统能减少或消除小鼠机体中的黑色素瘤、三阴性乳腺癌肿瘤和胰腺肿瘤,甚至还包括一些距离原发性肿瘤位点较远的肿瘤组织。研究者Sidi Chen教授表示,这是一种全新的免疫疗法;免疫疗法给癌症治疗带来了革命性的进展,但当前很多疗法并不能针对所有患者发挥作用,同时也只能治疗部分癌症类型;现有的治疗手段有时并不能识别癌细胞的所有分子伪装,这就使得疗法治疗效果会变差。为了解决这些问题,这项研究中,研究人员开发了一种新系统,其能将病毒基因疗法和CRISPR基因编辑技术相结合,代替了寻找并编辑DNA并插入新基因,这种名为MAEGI(内源性基因的多重激活作为免疫疗法,Multiplexed Activation of Endogenous Genes as Immunotherapy)的新系统能对成千上万个癌症相关基因进行大规模搜索,同时像GPS一样定位并放大信号。MAEGI能对肿瘤细胞进行标记并进行免疫摧毁,其能将冷肿瘤(缺乏免疫细胞)转化为热肿瘤(携带免疫细胞),研究者Chen表示,这相当于给肿瘤细胞穿上了橙色的防弹衣,促进机体免疫系统警察迅速找到并消灭这些癌细胞。一旦癌细胞被识别,宿主机体免疫系统就能快速对其进行摧毁消灭。7.Mol Ther:科学家有望利用CRISPR-Cas9技术成功治疗宫颈癌doi:10.1016/j.ymthe.2019.08.012最近,一项刊登在国际杂志Molecular Therapy上的研究报告中,来自格里菲斯大学的科学家们通过研究借助CRISPR-Cas9技术利用隐形纳米颗粒成功在体内靶向作用并对小鼠的宫颈癌进行了治疗。研究者Nigel McMillan教授说道,这是我们第一次使用基因编辑技术来成功治疗癌症的例子;这种隐形纳米颗粒能够寻找癌细胞中的致癌基因,同时通过引入一些额外的DNA来对其进行编辑,这些额外的DNA能够促进致癌基因误读并停止转录翻译;这就好比是在一个单词中添加几个额外的字母,所以拼写检查器并不会将其识别为“anyTTmore”,因为癌症必须由这个基因来产生,一旦被进行了编辑,癌细胞就会死亡。这项研究中,研究者所治疗的小鼠存活率达到了100%,而且其机体中并没有任何肿瘤痕迹,这些小鼠也并没有其它临床迹象,比如来自疗法的炎症等,但其可能还有其它基因改变研究人员并未测到。一旦研究人员知道了正确的基因,其它癌症就能够得到有效治疗;近乎所有的宫颈癌都是由人类乳头瘤病毒(HPV)所引起,每年都有超过250名澳大利亚女性因宫颈癌而死亡。8.Nat Biotechnol:基因编辑免疫细胞攻击胶质母细胞瘤doi:10.1038/s41587-019-0246-4耶鲁大学系统生物学研究所和耶鲁癌症中心的遗传学助理教授Sidi Chen实验室开发了一种先进的基因编辑和筛选技术,可以为癌症免疫治疗寻找新的靶点。于近日发表在《自然生物技术》(Nature Biotechnology)杂志上的一项新研究中,Chen和同事们报告说,在小鼠胶质母细胞瘤模型中,使用含有这些基因靶点修饰的T细胞可以让肿瘤生长变慢。而胶质母细胞瘤是一种特别难以治疗的脑癌。图片来源:Nature Biotechnology。研究人员指出,大脑的免疫系统活动非常有限,因此不是一个特别有希望的免疫治疗器官。陈的实验室开发了一种复杂的病毒载体,内含转座子或跳跃基因,有助于T细胞的基因筛选能力。T细胞的基因组筛选揭示了一个目标--PDIA3,当在T细胞中的PDIA3受到抑制时,可以抑制小鼠胶质母细胞瘤的生长。研究人员还表明,在特定类型的T细胞中敲除PDIA3可以增强它们在人类胶质母细胞瘤细胞中的抗癌特性。9.PNAS:构建出提高CRISPR-Cas9基因编辑精确度的新变体---SaCas9-HFdoi:10.1073/pnas.1906843116在一项新的研究中,来自中国香港城市大学的研究人员开发出基因编辑技术CRISPR-Cas9的一种新变体,它有潜力在人类基因治疗期间提高基因编辑的精确度。相比于野生型CRISPR-Cas9,这种新变体降低了DNA中出现的意外变化,这表明它可能在需要高精确度的基因疗法中发挥作用。相关研究结果近期发表在PNAS期刊上,论文标题为“Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity”。这些研究人员鉴定出一种命名为SaCas9-HF的基因改造变体,它在实验室环境中可显著提高人细胞中24个基因组位点的基因靶向准确性。对于高度相似的基因序列,SaCas9-HF将脱靶活性降低了大约90%,然而当使用野生型SaCas9时,这往往导致意料之外的编辑。对于通常具有较少编辑失误的基因序列,SaCas9-HF具有几乎无法检测到的脱靶活性。香港城市大学的Zongli Zheng博士说,“我们的发现为野生型Cas9工具提供了一种替代方案---在需要高度精确的基因组编辑时使用这种Cas9变体。这种新的核酸酶对在未来使用AAV在体内递送基因组编辑组分进行的基因疗法特别有用。”10.PNAS:开发出在基因编辑时阻止基因组不稳定的CRISPR-BEST技术doi:10.1073/pnas.1913493116尽管CRISPR技术允许对基因组进行更好的操纵,并对现代药物开发和更好的新型抗生素的发现产生许多积极影响,但是当使用该技术时,仍然存在诸如基因组不稳定和Cas9蛋白毒性等重大问题。不过,在一项新的研究中,来自丹麦技术大学的研究人员开发出一种称为CRISPR-BEST的新工具,它有望成为CRISPR工具箱中的新成员。这种工具可以在不需要引入DNA双链断裂的情况下高效地在放线菌中产生突变。相关研究结果近期发表在PNAS期刊上,论文标题为“Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST”。因此,CRISPR-BEST系统解决了放线菌基因工程所面临的一项重大挑战,这是因为引入DNA双链断裂经常导致基因组不稳定,这就迫使放线菌发生重排,或者甚至剔除较大的染色体片段---这是当对细胞进行基因改造以便产生物活性化合物和新型抗生素时想要避免的一种现象。11.Nat Commun:利用CRISPR技术改造微生物组doi:10.1038/s41467-019-12448-3最近,来自Western大学的研究人员开发了一种将DNA编辑工具CRISPR-Cas9应用于改造实验室微生物的新方法,从而提供了一种有效地对特定细菌发起针对性攻击的方法。今天发表在《Nature Communications》杂志上的这项研究开辟了使用CRISPR改变人体微生物组组成的可能性,这种方式可以因人而异。它还提供了替代传统抗生素的潜在疗法,可以杀死诸如金黄色葡萄球菌(Staph A)或大肠杆菌(E. coli)在内的细菌。Schulich Medicine&Dentistry教授David Edgell表示:“使用CRISPR杀伤细菌并不是什么新主意,因为这正是CRISPR本来的用途。然而,问题是如何将CRISPR送到目标位置。其他传递系统只能到达几个特定地点,而我们的新方法可以将其传递到任何地方。包括CRISPR在内的任何治疗手段的最大瓶颈之一都是特异性的问题。通过开发这种新的递送系统,我们创造了新的工具,可以在不久的将来帮助我们开发更有效的疗法”。12.Nat Biotechnol:利用I型CRISPR/Cas系统对人细胞进行靶向转录调节doi:10.1038/s41587-019-0235-7在一项新的研究中,美国杜克大学生物医学工程副教授Charles Gersbach、Gersbach实验室博士后研究员Adrian Oliver及其团队首次描述了他们如何成功地利用I型CRISPR系统开启和关闭基因,并对人细胞中的表观基因组进行编辑。他们希望这能够极大地扩展生物医学工程师可用的基于CRISPR的工具,从而开启一个多样化的基因组工程技术新领域。相关研究结果近期发表在Nature Biotechnology期刊上,论文标题为“Targeted transcriptional molation with type I CRISPR–Cas systems in human cells”。示意图指出常见的dCas9系统(上面)和Cascade系统(下面)的组分,图片来自Gersbach Lab。为了探寻I型CRISPR系统的功能,Oliver将基因活化剂连接到了大肠杆菌I型Cascade复合物的特定位点上,从而让这种系统靶向结合调节基因表达水平的启动子。鉴于她在实验中没有使用Cas3蛋白,因此不存在DNA切割,也就不会改变DNA序列。这项实验表明这种Cascade活化剂不仅结合正确的位点,而且可以提高靶基因的表达水平,而且这样做的准确性和特异性与CRISPR/Cas9相当。Oliver使用来自另一种细菌菌株的I型Cascade复合物重复了该过程,结果发现它能够在多个靶位点上强效地发挥作用。她还发现可以将这种活化结构域(即前面的活化剂)替换为阻遏物,从而关闭靶基因。这些研究人员再次指出,这种方法的准确性和特异性可与CRISPR/Cas9方法媲美。