欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校
生物、材料化学和环保等专业是否可以选择马赛人

生物、材料化学和环保等专业是否可以选择

首先,在专业选择上要考虑三方面因素,其一是自身的知识结构和能力特点;其二是兴趣爱好;其三是发展趋势,其中知识结构和兴趣爱好是比较可观的,而发展趋势在很大程度上是难于把握的。所以,在专业选择上应该首先立足自身的客观条件,然后结合行业发展趋势来进行选择。虽然专业本身并不存在优劣的问题,俗话说三百六十行,行行出状元,但是不同的历史时期,不同专业的发展情况是有较大区别的,比如目前IT行业的发展速度就比较快,所以IT行业也是近些年来的热门。但是在判断一个行业优缺点时,不能仅仅从就业来看,也要看这个行业从业者的整个职业生命周期。以IT行业为例,虽然毕业生的就业岗位比较多,而且起始薪资待遇也比较高,但是IT行业从业者的职业生命周期相对就比较短,而且工作压力大、学习压力大、竞争压力大,不少从业者在40岁之前可能就需要考虑转行的问题了,所以从整个职业生命周期来看,IT行业的优势也就并不那么明显了。生物、材料化学和环保这几个专业目前确实存在行业发展不突出的问题,而且就业岗位相对也并不多,但是这几个行业的从业者,在职业生命周期上还是具有一定优势的,如果自身的知识结构能够支撑从业者在行业领域走得更远,也是完全可以考虑的。最后,在产业结构升级的推动下,选择生物、材料化学、环保等专业的学生,如果条件允许的话,读一下研究生会明显提升自己的职场竞争力。我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!

格斗术

材料化学专业综合实践

在用注塑机进行注塑成型实验中,注射压力和保压各有什么作用,及它们过大和过小能对产品性如何影响?注力注塑机的注射压力是以螺杆顶部对塑料熔体施加的压力为准的。注射压力在注塑成型中所起的作用射压是克服塑料熔体从料筒向模具型腔流动的阻力,保证熔料充模的速率并将熔料压实。注塑过程中,注射压力与塑料熔体温度实际上是互相制约的,而且与模具温度有密切关系。料温高时,注射压力减少,反之,所需注射压力加大。保压指注射压力对模腔内的熔体继续进行压实的过程。熔体在模腔内冷却时会导致熔体收缩,压力下降,需要螺杆或柱塞在保压过程中继续向前少许移动,继续保持施压状态,对因冷却成型收缩而出现的空隙进行补料,同时使模腔中的塑料能形成形状完整而致密的制品。在用吹膜机进行吹膜制背心袋的实验中,在温度和冷却风量确定的情况下,有哪些因素影响塑料袋的厚度及如何影响?[1] 树脂粒子的熔融指数太大,则熔融树脂的粘度太小,加工范围较窄,加工条件难以控制,树脂的成膜性较差,不易加工成膜;另外,熔融指数太大,聚合物相对分子量分布太窄,薄膜的强度较差。[2] 吹胀比过大,容易造成膜泡不稳定,且薄膜容易出现皱折。[3] 牵引比过大,易拉断膜管,造成断膜现象。玻璃钢实验中,加入乙二醇、顺丁烯二酸酐、邻苯二甲酸酐和对苯二酚,其作用是什么?3、乙二醇是缩聚的单体之一,顺丁烯二酸酐或邻苯二甲酸酐是缩聚的另一种单体之一。顺丁烯二酸酐的作用是在不饱和聚酯中引入双键,固化时与体系中必需的另一组分苯乙烯交联。什么是维卡软化点?2 本次应力应变测试用的是何种高分子材料,试样为什么要做成哑铃型?3、工程塑料、通用塑料等聚合物的试样于液体传热介质中,在一定的载荷、一定的等速升温条件下,被1m㎡的压针压入1mm深度时的温度。做成哑铃型主要是为了防止在家具段部发生应力集中,使得材料的破坏不是按照预期的拉伸破坏,而是应力集中导致的屈服现象。一般做成哑铃型的试样进行力学性能分析时,材料的破坏都发生在试样的中间区域附近,这样计算的应力比较准确。锂离子电池的工作原理?写出正极钴酸锂,负极石墨碳的充放电反应化学方程式。3、以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。简述实验过程中,从电极片到纽扣电池的整体组装和测试步骤。电池极片制备 将活性物质MoO3/C、导电碳黑(Super P)、聚偏氟乙烯(PVDF)以质量百分比为70: 20: 10均匀混合后,充分研磨,在N-甲基吡咯烷酮(NMP)下将其调为泥浆状后,使用150 m的制膜器将浆料均匀的涂膜在铜箔上,放入烘箱中,真空烘干。待冷却至室温后,用滚压机压实,再用卡片机制成圆片,称重,放置到手套箱中备用,活性物质在每个电极片上的质量密度为约2.21 mg/cm2, 制备成电极片,放置待用。电池组装测试 锂离子纽扣电池的组装是在氮气保护的手套箱中完成的,直径为1.1 cm的金属锂片为对电极,体积比为1: 1的碳酸乙烯酯(EG) 和碳酸二甲酯(DMC) 中的1.0 M六氟磷酸锂(LiPF6) 为电解液,Celgard 2400为隔膜。组装成功的纽扣锂离子电池在室温干燥后方可测试,电池横流充放电过程均在Land-CT2001A型号电池测试工作站上完成,电化学循环的电势范围选择0.01~3.0V(vs. Li/Li+)。

上漏下湿

国内外知名学者线上研讨能源和环境材料化学学科发展

11月10日,由国家级创新引智基地(三峡大学)、三峡大学教师发展中心材化分中心、材料与化工学院、无机非金属晶态与能源转换材料重点实验室、材料化学国际合作研究中心共同举办的2020年能源和环境材料化学学科前沿论坛系列“云上”报告会第四场开讲。近200名国内外知名专家学者参会,共同探讨能源和环境材料化学学科发展。该论坛的举办旨在为广大师生搭建打造具有品牌效应的学术交流平台,进一步促进该校能源、环境、材料和化学学科之间的交叉融合,发挥国家级创新引智基地在材料ESI学科建设和学校国内一流大学建设进程中的引领作用。会上,特邀嘉宾北京理工大学杨国昱教授、国家纳米中心唐智勇研究员、澳大利亚格利菲斯大学张山青教授、郑州大学臧双全教授、浙江大学史炳锋教授、中国科学院化学所王栋研究员、西北大学栾新军教授、苏州大学吴涛教授,为三峡大学材料化学学科师生分享了有关能源和环境材料化学学科前沿重点研究领域最新科研进展。该校师生与报告嘉宾在线上进行了深入探讨与交流,报告者分享的学术思想及研究方式给师生提供了学术研究领域的新视角和新方向。(通讯员:三峡大学易娜)

王曰

我国多领域前沿研究表现活跃 在化学与材料科学等三大领域成绩显著

光明日报北京11月26日电(记者袁于飞)26日,由中国科学院科技战略咨询研究院、中国科学院文献情报中心与科睿唯安联合举办的“2019研究前沿发布暨研讨会”在北京举行,向全球发布了《2019研究前沿》报告和《2019研究前沿热度指数》报告。报告显示,2019年,在十大学科领域整体层面,美国最为活跃,位居全球首位。中国位居第二,英国、德国和法国分别为第三、第四和第五。中国和美国之间的差距正在进一步缩小。“总体来看,中国多领域表现突出,但十大学科领域的发展仍不均衡,存在明显的洼地,未来发展的竞争优势、压力和挑战并存。”中国科学院科技战略咨询研究院战略情报研究所所长冷伏海研究员介绍,《2019研究前沿》和《2019研究前沿热度指数》评估了世界主要国家在十个领域的100个热点前沿和37个新兴前沿的研究活跃程度。从2019年研究前沿热度指数排名第一的前沿数来看,美国排名第一的前沿有80个,占全部137个前沿的58.39%,中国排名第一的前沿数为33个,约占24.09%。英国有7个前沿排名第一,德国和法国分别有1个前沿排名第一。从十大领域来看,美国除了化学与材料科学领域,数学、计算机科学与工学领域和生态与环境科学领域,在其他七个领域的研究前沿热度指数得分均排名第一,领先优势明显。中国在化学与材料科学领域,数学、计算机科学与工学领域以及生态与环境科学领域这三个领域排名第一,在农业、植物学和动物学领域,地球科学领域,生物科学领域,物理领域和经济学、心理学及其他社会科学领域等五个领域排名第2,整体表现突出,但在临床医学领域和天文学与天体物理领域这两个领域仅分别排在第9名和第11名,与美国差异悬殊,短板依旧明显。中国科学院院长、党组书记白春礼院士在致辞中指出,我国要实现基础科学研究整体水平和国际影响力显著提升的目标,要在科学前沿重要方向取得一批重大原创性科学成果,解决一批面向国家战略需求的前瞻性重大科学问题,提高引领创新驱动发展的源头供给能力,就必须准确把握未来科技方向和重点。为此,中国科学院启动了“可能影响世界未来格局的中国重大科技突破研判”等一系列重大科技智库研究项目,依托中国科学院战略咨询院发挥作为中科院率先建成国家高水平科技智库的重要载体和综合集成平台的优势,组织中科院内外研究力量,从世界科技前沿、国家重大需求出发,前瞻分析中国未来可能影响世界发展格局的重大前沿科技突破,服务国家科技创新战略布局。据介绍,从2014年开始,中国科学院战略情报研究团队与科睿唯安合作,通过大数据和文献计量分析方法,聚类揭示了基础科学领域的年度热点前沿和新兴前沿,发布《研究前沿》年度研究报告。《光明日报》( 2019年11月27日 10版)

华新街

材料类专业最全解析

基础学科 就业稳定在现代科学技术中,材料、能源、信息是构成社会文明和国民经济的三大支柱,其中材料更是科学技术发展的物质基础和技术先导。材料科学与工程专业属于基础性学科,从民生制造到航天工程,无不与之有关联。材料无处不在大千世界中的材料无所不包、无处不在。吃、穿、住、行,每个人每天会碰到诸如金属、橡胶、磁性、光电等众多材料,小到一根针、一张纸、一个塑料袋、一件衣服,大到交通工具、医疗器械、工程建筑、信息通讯、航天航空,处处都有材料科学的身影。材料科学与工程是一个涉及材料学、工程学和化学等方面的较宽口径专业。该专业以材料学、化学、物理学为基础,主要研究的是材料成分、结构、加工工艺与其性能和应用。事实上,人类文明发展史,就是一部如何更好地利用材料和创造材料的历史,材料的不断创新和发展,也极大地推动了社会经济的发展。专业解析材料科学与工程学科是研究各类材料的组成及结构,制备合成及加工,物理及化学特性,使役性能及安全,环境影响及保护,再制造特性及方法等要素及其相互关系和制约规律,并研究材料与构件的生产过程及其技术,制成具有一定使用性能和经济价值的材料及构件的学科。材料科学与工程学科属于工学门类的一级学科,它主要研究材料的组成结构、合成加工、基本性质及使役性能等要素和它们之间相互关系的规律,并研究材料的生产过程及其技术。根据材料的组成形式,可分为金属材料、无机非金属材料、有机高分子材料和复合材料;根据材料的性能特征,又可分为以力学性能为应用基础的结构材料和以物理及化学性能为应用基础的功能材料。材料科学与工程学科以数学、力学、物理学、化学和生物学等基础科学为基础,以加工制造等工程学科为服务和支撑对象,是一个理工结合、多学科交叉的新兴学科,其研究领域涉及自然科学、应用科学以及工程学。材料科学与其他工程学科的结合发展和相互丰富,充实了人们对自然科学的认识,推动和促进了科学技术的发展和进步。材料类专业包括以下8个基本专业和6个特设专业0804材料类(基本专业)080401材料科学与工程080402材料物理(注:可授工学或理学学士学位)080403材料化学(注:可授工学或理学学士学位)080404冶金工程080405金属材料工程080406无机非金属材料工程080407高分子材料与工程080408复合材料与工程0804材料类(特设专业)080409T粉体材料科学与工程080410T宝石及材料工艺学080411T焊接技术与工程080412T功能材料080413T纳米材料与技术080414T新能源材料与器件材料学是研究材料组成、结构、工艺、性质和使用性能之间相互关系的学科,为材料设计、制造、工艺优化和合理使用提供科学依据。材料专业主要课程有:(1)工科的基础课——高等数学、普通物理、线性代数等;(2)专业基础课——物理化学、分析化学、有机化学等;(3)专业课——材料研究方法、材料科学基础、材料工程基础等。学科建设:各具特色,百花齐放材料科学与工程专业范畴的广泛,决定了各校研究方向的多样性。清华材料科学与工程系相关负责人介绍,该校材料学倾向于新型功能材料的研究,拥有新型陶瓷与精细工艺国家重点实验室、先进材料教育部重点实验室等,拥有先进的现代材料制备平台和分析测试平台,拥有材料科学与工程一级学科与核燃料循环与材料二级学科的博士和硕士学位授予权。目前在校研究生超过本科生,博士和博士后人数之和超过硕士研究生。全系33名教授中有两院院士5人。北科大被誉为“材料领域的航空母舰”,在历次全国权威学科评比中稳居前二三名。学校的材料科学与工程专业历史可追溯到建校初期,是我国最早的国家一级重点学科,设有博士后流动站。该校师资雄厚,汇聚了众多材料领域名师,有3位科学院院士,1位工程院院士,136位博士生导师,189位硕士生导师。强大的师资阵容为科研和教学提供了坚强后盾。北科每年招收材料学专业硕士研究生达600余人、博士研究生200余人。新招研究生人数是本科招生的1.5倍。“量大面广,贴近产业”是北科材料科学与工程专业的特点。学校不但设立了材料科学与工程学院,还设立了新材料技术研究院,侧重研究技术成果的现实转化。新材料技术研究院常务副院长乔利杰教授介绍,传统材料研究是学院特色,功能材料研究也发展较快。学院在钢铁、陶瓷、粉末等领域均有突出优势,磁性材料科研是强项,金刚薄膜材料在全国最好,对材料性能服役行为的研究如环境适应性、寿命、可靠性、耐久性等方面在高校中是独一无二的,从海南岛到新疆,从四川到黑龙江,遍布着研究院腐蚀领域的科研站点。显示材料、有机光电等领域研究发展很快。学院具有浓厚的学习氛围,汇聚了业内名师的材料名师讲坛在这个“五一”节前已经做到了53讲。北航的材料学具有“空天信”一体的特点,形成了轻合金结构材料及激光制备、先进树脂基复合材料、先进高温结构材料与涂层技术、特种功能材料及器件、失效分析与预测预防等具有明显优势的航空航天特色研究方向。该校朱立群教授说,学院注重航空航天和信息科学领域科研的融合。轻质材料研究属高端领域,因为空间环境复杂,如高温高湿,对材料性能、安全可靠性要求更高。材料学院的教学和科研已与国际接轨,与国外多所著名高校、一流研究机构和世界级跨国公司建立了实质性合作关系。本科教学实行中外“3+2”联合培养,研究生每年有很多与国外交流学习的机会,融入国际最前沿的科技,逐步向材料、器件一体化发展。“学院给人的印象是国防特色,其实,这只是其中一部分,大量的学生是面向民用领域的。”他说。学院拥有以中国工程院院士钟群鹏教授和徐惠彬教授等教授为代表的一流师资队伍,拥有教授37名、博导34名、副教授32名,有4个省部级重点实验室。徐惠彬院士的科研项目宽温域与耐腐蚀巨磁致伸缩材料及其应用获得了国家技术发明奖一等奖,形成了“超常服役环境金属智能材料”国家自然基金委创新群体、“高性能非平衡材料科学与技术”和“高性能金属材料激光制备与成型”教育部创新团队、“先进高温材料与涂层技术”国防科技创新团队。学院每位博士研究生导师平均带一个硕士生和一个博士生。北工大的材料学院则注重材料与资源、能源和环境的协调发展,形成了以环境友好为主导的多门类材料专业人才培养、科研和技术开发特色。学院现有材料学、材料物理与化学、材料加工工程3个硕士学位授权点,材料科学与工程一级学科博士学位授权点,材料科学与工程一级学科博士后流动站,材料学国家重点学科,拥有新型功能材料教育部重点实验室、北京市生态环境材料及其评价工程技术研究中心、北京市材料科学与工程人才培养基地等。学院践行“产学融合、协同创新”的方针对学生进行培养,以服务社会为主,“研究出来的东西能用,是对研究生培养的新要求”汪浩教授解释说。此外,上海交通大学、中科院金属研究所、哈尔滨工业大学、北京化工大学、北京理工大学等高校院所也都是材料领域的名校,形成了各自的方向和特色。就业方向就业率比较稳定据阳光高考平台数据显示,材料科学与工程专业普通高校毕业生规模在1.2万人-1.4万人。就业保持稳定,连续三年就业率区间一直处于90%-95%之间。业内人士表示,材料科学与工程是一个基础性学科,应用广泛,在工科专业中就业率不算最高,但是还是比较稳定的。以北京化工大学为例,该校材料科学与工程学院2012届毕业生总就业率为100%,就业地区主要分布多在京、津、沪及各省会和沿海发达城市,就业分布最多五省市:广东、山东、上海、天津、北京。就业方向:国有企业比例为50.15%,三资企业为22.12%,机关事业单位为7.3%。其中去往中石油、中石化等石油和化工行业的人数较多,比例为25.3%。北京航空航天大学材料科学与工程专业毕业生就业率可以达100%。上海交通大学该专业近年来在传统学科中脱颖而出,本科生就业率一直处于99%左右。专业覆盖面广随着人类进入新世纪和科学的发展,无论是工业领域、建筑领域、医用领域还是航空领域,材料学都面临着技术突破和重大产业发展机遇。同时以高分子材料、纳米材料、光电子材料、生物医用材料及新能源材料等为代表的新材料技术创新也显得异常活跃。很多日用化工类、机械加工类、石油化工、钢铁制造类企业都需要材料及相关工程方面的人才。学生毕业后可以到材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、陶瓷、水泥、家用电器、电子电气、汽车厂、钢铁企业、石油化工、制造企业、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。本科生除了就业以外,另一个主要去向就是读研或深造。可以说读研率高是材料类专业的一大特点。学生在本科阶段学习的知识也是全面的、基础性的,以便为将来的学习打好基础。如果想要在某一领域有深入的研究和发展,还需要进一步学习深造。从很多企业招聘的学历要求和给予的待遇就能看得出,高学历毕业生在就业环境和工资待遇等方面明显优于本科毕业生。因此,毕业生考研和继续深造的比例很大。如北京航空航天大学材料科学与工程专业毕业生读研和出国的比例就达到了67%;北京化工大学近三年来该专业毕业生的平均考研率为41%左右,2012年出国人数占总毕业生数的13.56%;天津大学该专业本科毕业生读研深造率在50%左右,5%同学选择出国深造,随着国际合作的加强,这一数据也在逐年递增;上海交通大学近年来该专业优秀本科生选择继续研究生教育比例也增长明显,本科毕业后继续深造的比例超过50%。宝石及材料工艺学毕业后可在商贸、经贸、商检、旅游、银行等部门从事珠宝首饰和材料工艺的商贸、鉴定、加工制作、质量监督和检验、生产管理、科技开发工作。金属材料工程毕业后可在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。冶金工程毕业后可从事冶金技术及其理论、冶炼过程及控制、冶炼工艺及装备设计、生产技术改进、冶炼成品性能改进和检测及冶金企业管理等工作。焊接技术与工程毕业后可面向机械制造,船舶制造等行业,大、中型企业,从事自动焊接、半自动焊接技术操作与施工,工艺规程制定,产品质量检验,现场生产管理与技术管理等工作。高分子材料与工程毕业后可在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作。材料科学与工程毕业后可在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作。高分子材料加工工程毕业后可到航空航天、汽车制造、电子信息、能源、计算机制造、通讯器材、生物医用设备、建材、家电企事业单位、研究院所和高校从事研发、产品设计、管理等工作。无机非金属材料工程毕业后可在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。复合材料与工程毕业后可在与复合材料相关的汽车、建筑、电机、电子、航空航天、国防军工、轻工、化工等有关企业和公司从事设计、研发、分析、生产、测试、营销、管理等工作。生物功能材料毕业后可在生物材料的制备、改性、加工成型及应用等领域从事科学研究、技术开发、工艺设计、生产及经营管理,在研究院所、设计院、大专院校和企事业单位工作。稀土工程培养从事稀土材料,稀土冶金,工程设计和科技创新的高级专门人才。毕业后可从事稀土材料,稀土冶金,工程设计和科技创新。粉体材料科学与工程毕业后可从事粉体材料加工制备、粉末冶金、硬质合金与超硬材料、陶瓷材料、新型电工电子材料、纳米材料和复合材料等方面的科研、生产、开发、教学、管理工作。再生资源科学与技术培养在再生资源领域中从事生产和管理的高级技术工程及从事固体废弃物资源化开发研究和设计的高层次人才,毕业后可从事生产和管理的高级技术工程。报考指南看准方向选学校材料科学与工程专业蓬勃发展,很多工科和综合院校均开设了这个专业。目前,全国有150余所高校开设材料科学与工程专业,各大学的专业方向和培养侧重点各有不同。专业方向的选择可能直接影响未来的就业,考生在考虑院校时,最好对学校特色和专业方向有所了解,看准目标比较清楚后,再选择符合自身情况的学校和专业。国内一些著名的高校的材料科学与工程专业都有自己的特色方向,如清华大学、北京科技大学、哈尔滨工业大学、西北工业大学、上海交通大学、北京航空航天大学、浙江大学、天津大学、中南大学、东华大学、北京化工大学等。这些大学的材料科学与工程专业都在2012年教育部全国学科评估中排名前20名。如北京航空航天大学的材料科学与工程为全国最早进行“材料科学大类人才培养”改革试点的专业,按一级学科宽口径培养人才。该专业拥有与国际接轨的最先进的教学理念和与之相适应的“公共基础+学科大类平台课+专业方向课”的课程体系,高年级后按金属与陶瓷材料、特种功能材料与器件、高分子及复合材料、材料加工工程与自动化、腐蚀与保护等五个培养方向。北京科技大学的材料科学与工程是首批国家重点学科,设有三个本科专业,其中,材料科学与工程专业按一级学科统一招生,两年后由学生自主选择材料科学与工程、材料成型与控制工程、材料物理、材料化学、无机非金属材料工程、功能高分子材料、表面科学与工程七个专业方向之一进行学习。材料科学与工程专业(卓越计划)的培养重点在材料加工工程,该学科在全国金属压力加工行业中有重要的影响。中南大学该专业在京按材料类招生,该大类涵盖材料科学与工程、材料化学、粉体材料科学与工程。其中,材料科学与工程本科类专业复合材料方向,主要培养学生具备航空航天领域轻质高强耐高温新型复合材料的应用和研究能力。什么样的学生不适合?材料专业研究的主要是材料的成分、结构、加工工艺与其性能等方面,而构成材料性能结构的因素主要就其化学结构。从该专业所学的课程就能看出——无机化学、有机化学、物理化学、分析化学……其专业课程很多都是与化学相关的。可以说,化学是研究材料性能的基础,材料的进一步加工、改性、塑性等都离不开化学和物理学的基础。所以,考生在报考该专业时,一定要根据自己的兴趣爱好、实际情况来选择,喜欢化学、物理的学生学习起来应该会“如鱼得水”。另外,材料类专业对考生的身体条件也有一定的要求,根据《普通高等学校招生体检工作指导意见》任何一眼矫正到4.8镜片,度数大于800度的考生不宜就读材料类专业。患有轻度色觉异常(俗称色弱)不能录取的专业中就包括材料类中的高分子材料与工程专业。另外,患有色觉异常Ⅱ度(俗称色盲)不能录取的专业中除了高分子材料与工程外,还包括了材料类中的材料物理、冶金工程、无机非金属材料工程等专业。这里所说的只是总体情况,各校的要求不同,考生在报考时一定要注意查看各院校招生章程或咨询该校招办,以免发生误选、错漏的情况。教育部最新排名!2017年全国高校学科评估结果

谢鲲

天津大学材料化工2021考研初试复习备考经验分享

招生院系:化工学院招生专业:0817Z3材料化工研究方向:01不区分研究方向考试科目:①101思想政治理论②201英语一③302数学二④839物理化学或863高分子化学与物理复试科目:微生物学备考经验英语的学习在于积累,重点在于词汇以及阅读。初学者可以先掌握一定量的词汇后,开始拿阅读题进行测试。在做阅读的时候,可以从词汇,长难句,文章框架以及出题人设错方式这几个角度来分析一套阅读题目。我当时每天做2-3篇阅读,然后结合唐迟视频,对1-2篇进行精度训练,最后达到的水准是:不认识的单词全部查明白,长难句断句清晰,每一个错题原因分析清楚。阅读训练到一定程度就可以开始做完形填空以及新题型,因为此时你的词汇量积累以及对文章的逻辑框架都有了一定的认识。最后9月份开始一直到考研前都要练习英语大、小作文,我当时是在考研文库积累的作文素材,然后10月份开始每天都背诵素材并写一篇作文,保持思路和手感一直到考研。数学作为考研两大主课之一,是最容易得分,也最容易失分的一门。先分析一下原因:第一,数学分值是150分,而且数学很大一部分是考查最基础的内容,最容易得分,但是如果不认真打好基础,不认真审题,也是最容易失分的;第二,数学周期性强,数学一一共要学习四本书,高等数学上下册、线性代数、概率论与数理统计,以高等数学为主,全面考察学的计算能力以及解决实际应用问题的能力,所以数学的学习要趁早,并且要打好基础。暑假前一定要完成至少一轮整体复习,要对课本上的内容无论是例题,还是课后习题都要认真去做,要学会去整合习题、分析习题,并且要通过研究习题去分析常用考点,考点之间的联系也都要弄清楚,还要了解解题方式,也是重中之重。课内参考书:专业课:A,物化,请看天大的物化书和基础化学实验教程(科学出版社,天大自己学生实验用这个书);B,化原,天大的化原书,化工基础实验(天大的,化学工业出版社);然后复试,反应工程(李绍芬),基本是前面六章。第七章稍微看点,然后看点专业英语,这个不是重点,然后是综合面试,物化,化原,反应工程的一些概念以及物化、化原实验的问题,可能涉及到化工原理课程设计。课外参考书如果有做题的参考书的话,我个人觉得蛮不错的。我专业课是跟新祥旭一对一学习的,老师会对考研指定教材中的考点内容进行深入提炼和总结,同时辅以科学合理的复习规划,帮助我掌握天津大学此门课程百分之九十的考点、从而可以用最短的时间实现全面而有深度的复习。还是很有帮助的。送给各位学弟学妹几句话:考研是你对自己的一种救赎,是你最后一次改变自己的机会,愿你们化不甘为力量,奋发向上,做最好的自己。你要安静的优秀,悄无声息的坚强,时间是最好的答案。加油考研学子,愿你们乘风破浪,他日毋忘化雨功。

不得复使

材料工程哪些方向就业较好?重要的不是专业,而是学习研究的方向

材料工程哪些方向就业较好?重要的不是专业,而是学习研究的方向生化环材四大专业是目前最遭吐槽的四大专业,也是传统工科最不受待见专业的代表,比如材料专业,尽管是比较坑,但材料大类专业依然是招生人数的工科专业,换句话说也是读的人最多的工科专业,也是一流专业中入选学校最多的专业。而且材料学范围太广了,细分太多了,有些方向还是不错的。生化环材zy材料科学与工程招生计划一般是材料科学与工程大类招生,然后大一大二分方向。虽然细分领域非常多,但主要有材料物理、材料化学、金属材料、无机非金属材料、高分子材料、材料成型及控制工程等方向,有的学校还有更细分的,比如高分子在某些学校还会被分成橡胶、化纤、塑料等。材料物理、材料化学比较特殊,在大部分学校是单独招生的,并且授予理学学位,整体偏理论一些,深造的必要性非常大,像纳米材料一样适合走科研学术路线。金属材料顾名思义多和矿业、冶金、机械行业相关,属于传统行业,大家都不喜欢。无机非金属材料,常见的有玻璃、陶瓷、水泥等,属于传统行业,新型的有晶体、半导体、光学、磁性、无机纤维无机涂层等,待遇还可以。高分子材料专业高分子材料有橡胶、化纤、塑料、涂料、粘合剂、复合材料等方向,高性能材料、特殊功能材料、生物医用材料、光电材料、精细高分子材料和其它特种高分子材料前途比较好。材料成型及控制工程(包括焊接),属于机械和材料交叉学科,更偏机械一些。宝石、焊接、纳米、复合材料等说法,要么特别小众,要么是非常规说法,要么是研究生的方向。所以大家有没有明白,本质问题不是哪个专业好,本质问题是要跟着潮流走,进新兴行业新兴企业,认真学习和研究和新兴行业相关的方向。比如新能源汽车发展迅速对锂电池需求提升很快,相关的专业就不错,学无机非金属材料、材料物理、材料化学都可以做这个。在比如芯片和半导体行业比较火,无机非金属材料、材料物理、高分子等专业都会涉及这方面的课程和方向。作为一门专业,不会细分到和某个具体岗位相关息息相关,但是会有相关课程和研究方向,对钱多的岗位感兴趣就去钻研相关的课程和方向。无机非金属材料专业整体来看还是高分子和无机非金属专业比较好一些,找准和芯片、半导体、锂电池相关的方向,有些学校会有具体的专业名称,比如电子信息材料、新能源材料与器件等。这个理念也可以广泛运用于其它专业类别,比如机械、电气,很多方向也有钱景。大家对此怎么看?

废一于堂

新材料专题报告之湿电子化学品行业深度研究

如需报告请登录【未来智库】。1、 湿电子化学品是重要的电子信息材料之一1.1、 湿电子化学品的核心要素是超净、高纯及功能性 湿电子化学品是电子行业湿法制程的关键材料。湿电子化学品属于电子化学品 领域的一个分支,是微电子、光电子湿法工艺制程(主要包括湿法蚀刻、清洗、显 影、互联等)中使用的各种液体化工材料。超净高纯试剂是在通用试剂基础上发展 起来的纯度最高的试剂,其杂质含量较优级试剂低几个数量级。湿电子化学品是对 “电子级试剂”、“超净高纯化学试剂”更为合理准确的表达。国内的超净高纯试剂, 在国际上通称为工艺化学品(Process Chemicals), 在美国、欧洲和我国台湾地区称 为湿化学品(Wet Chemicals),是指主体成分纯度大于 99.99%,杂质离子和微粒数 符合严格要求的化学试剂,其纯度和洁净度对电子元器件的成品率、电性能和可靠 性有十分重要的影响。按照组成成分和应用工艺不同,湿电子化学品可分为通用性和功能性湿电子化 学品。通用湿电子化学品以超净高纯试剂为主,一般为单组份、单功能、被大量使 用的液体化学品,按照性质划分可分为:酸类、碱类、有机溶剂类和其他类。酸类 包括氢氟酸、硝酸、盐酸、硫酸、磷酸等;碱类包括氨水、氢氧化钠、氢氧化钾等; 有机溶剂类包括甲醇、乙醇、异丙醇、丙酮、乙酸乙酯等;其他类包括双氧水等。 功能湿电子化学品指通过复配手段达到特殊功能、满足制造中特殊工艺需求的复配 类化学品,即在单一的超净高纯试剂(或多种超净高纯试剂的配合)基础上,加入 水、有机溶剂、螯合剂、表面活性剂混合而成的化学品。例如剥离液、显影液、蚀 刻液、清洗液等。由于多数功能湿电子化学品是复配的化学品,是混合物,它的理 化指标很难通过普通仪器定量检测,只能通过应用手段来评价其有效性。随着电子元器件制作要求的提高,相关行业应用对湿电子化学品纯度的要求也 不断提高。为了适应电子信息产业微处理工艺技术水平不断提高的趋势,并规范世 界超净高纯试剂的标准,国际半导体设备与材料组织(SEMI)将湿电子化学品按金 属杂质、控制粒径、颗粒个数和应用范围等指标制定国际等级分类标准。湿电子化 学品在各应用领域的产品标准有所不同,光伏太阳能电池领域一般只需要 G1 级水平; 平板显示和 LED 领域对湿电子化学品的等级要求为 G2、G3 水平;半导体领域中, 集成电路用湿电子化学品的纯度要求较高,基本集中在 G3、G4 水平,分立器件对 湿电子化学品纯度的要求低于集成电路,基本集中在 G2 级水平。一般认为,产生集 成电路断丝、短路等物理性故障的杂质分子大小为最小线宽的 1/10。因此随着集成 电路电线宽的尺寸减少,对工艺中所需的湿电子化学品纯度的要求也不断提高。从 技术趋势上看,满足纳米级集成电路加工需求是超净高纯试剂今后发展方向之一。1.2、 湿电子化学品行业:上承基础化工,下接电子信息 1.2.1、 湿电子化学品位于电子信息产业链的前端 湿电子化学品位于电子信息产业偏中上游的材料领域。湿电子化学品上游是基 础化工产品,下游是电子信息产业(信息通讯、消费电子、家用电器、汽车电子、 LED、平板显示、太阳能电池、军工等领域)。湿电子化学品的生产工艺主要采用物 理的提纯技术及混配技术,将工业级的化工原料提纯为超净高纯化学试剂,并按照 特定的配方混配为具有特定功能性的化学试剂。湿电子化学品行业是精细化工和电 子信息行业交叉的领域,其行业特色充分融入了两大行业的自身特点,具有品种多、 质量要求高、对环境洁净度要求苛刻、产品更新换代快、产品附加值高、资金投入 量大等特点,是化工领域最具发展前景的领域之一。湿电子化学品对包装、运输的要求极高,行业具有一定的区域性。湿电子化学 品大多属于易燃、易爆、强腐蚀的危险品,所以不仅要求产品在贮存的有效期内杂 质及颗粒不能有明显的增加,而且要求包装后的产品在运输及使用过程中对环境不 能有泄露的危险。目前最广泛使用的材料是高密度聚乙烯(HDPE)、四氟乙烯和氟 烷基乙烯基醚共聚物(PFA)、聚四氟乙烯(PTFE)。 HDPE 对多数超净高纯试剂的 稳定性较好,而且易于加工,并具有适当的强度,因而它是超净高纯试剂包装容器 的首选材料,HDPE 的关键是与大多数酸、碱及有机溶剂都不发生反应,也不渗入 聚合物中。对于使用周期较长的管线、贮管、周转罐等,可采用 PFA 或 PTFE 材料 做内衬。超净高纯试剂在运输过程中极易受污染,同时对运输工具也有较高要求, 运输成本也较高。为了保证稳定供应高品质湿电子化学品,湿电子化学品生产企业 往往围绕下游制造业布局,以减少运输距离。湿电子化学品行业的区域性决定了其 发展水平与该地区的电子产业发展水平呈正相关。“生产者-使用者-废液处理者”构成湿电子化学品闭环交易新模式。湿电子化学 品的闭环交易模式在国外早有应用,通过引入高水平废液再生提炼纯化商,一方面 解决了化学品使用者的废液处理问题,另一方面也能相应降低化学品生产者的生产 成本,是较为先进的生产模式。随着国内液晶产业的发展,国内液晶面板厂商也开 始广泛采用该模式,如“江化微-中电熊猫-默克电子”的合作,江化微向中电熊猫供 应正胶剥离液,苏州默克将使用后的废液进行回收提纯处理,江化微采购该类回收 液,根据技术和功能性要求,添加部分新液后进行纯化、混配,实现再生利用、绿 色生产。江化微的闭环模式主要是由产品特点所决定:正胶剥离液为混配产品,生 产工艺具有独特性,因此即使是废液回收处理后,由于内部配比关系,回收液通过 再加工也只能被原生产企业和最终客户循环使用。1.2.2、 高技术壁垒赋予湿电子化学品较高的附加值 源于大宗:湿电子化学品的成本构成中原材料占比较高。湿电子化学品的原材 料种类较多,主要包括氢氟酸、硫酸、硝酸、盐酸、氢氧化钾、氢氧化钠、有机溶 剂等基础化工产品以及其他各类添加剂。湿电子化学品企业的成本构成呈现出“料 重工轻”的结构特点,直接材料成本占营业成本的比重普遍在 70%-90%,因此原材 料价格波动会对湿电子化学品的生产成本有较大影响。我国化学工业经过多年发展, 已建立了较为完善的化工工业体系,这使得我国基础化工原料品种齐全。从量上看, 湿电子化学品对上游原材料的采购占上游行业总体的供给比例非常小,上游原材料 供给较为充足。从价格上分析,基础化工受到上游基础原料产业如原油、煤炭及采 矿冶金、粮食等行业的影响,近几年价格有所波动。总体上看,湿电子化学品价值 占其下游电子产业链价值比重较低,同时产品技术等级越高,则产品的附加值越高, 企业的议价能力越强,所以原材料对湿电子化学品企业盈利水平的影响可控。不同于大宗:湿电子化学品的高附加值源于精密纯化与混配技术。湿电子化学 品是化学试剂中对纯度要求最高的领域,对生产的工艺流程、生产设备、生产的环 境控制、包装技术都有非常高的要求,具备较高的技术门槛。与工业级化学品的合 成工艺不同,湿电子化学品在整个生产过程中主要工艺为纯化工艺和配方工艺,该 两大关键技术工艺基本为精密控制下的物理反应过程,较少涉及化学反应过程,不存在高污染、高耗能的情况。同时,湿电子化学品的工艺水平和产品质量直接对电 子元器件的功能构成重要影响,进而通过产业传导影响到终端整机产品的性能,因 此湿电子化学品具有附加值高的特点。以江化微为例,其超净高纯硝酸的平均售价 一般为 2,300-2,600 元/吨,而工业级纯化原料的价格一般为 1,200-1,500 元/吨,提纯 处理后的产品价值量显著提升。功能湿电子化学品的生产工艺更为复杂,除了提纯 外还有混配的过程,对产品的配方、制作参数的选择均十分考验生产商的技术实力 与生产经验。我们分别比较了江化微和润玛股份单酸、混酸产品的毛利率,可见混 配产品与单一纯化产品相比具备更高的盈利水平。(1)纯化工艺的核心是提纯技术和分析检测技术 分离纯化技术主要用于去除杂质,对化学品进行分离提纯以得到合格产品的过 程,其关键是针对不同产品的不同特性采取对应的提纯技术。目前国内外制备超净 高纯试剂常用的提纯技术主要有精馏、蒸馏、亚沸蒸馏、等温蒸馏、减压蒸馏、低 温蒸馏、升华、气体吸收、化学处理、树脂交换、膜处理等技术。不同的提纯技术 适应于不同产品的提纯工艺,有的提纯技术如亚沸蒸馏技术只能用于制备量少的产品,而有的提纯技术如气体吸收技术可以用于大规模的生产。检测分析技术是超净 高纯试剂质量控制的关键技术,根据不同的检测需要可以分为颗粒分析测试技术、 金属杂质分析测试技术、非金属分析测试技术等,目前分别发展到激光光散法、电 感耦合等离子体—质谱法(ICP-MS)、离子色谱法。(2)混配工艺的关键在于配方,需要长期经验积累 混配工艺是将纯化成品经过检测后,再进行过滤、精密混配的工艺过程,混配 工艺是满足下游客户对湿电子化学品功能性要求的关键工艺之一。混配类产品的核 心在于配方,装置通用性强,满足一定条件下,产能可互相通用转换。而配方的形 成需要企业有丰富的行业经验,通过不断的调配、试制及测试才能完成,甚至还需 要对客户的技术工艺进行实地调研,才能实现满足客户需要的功能性产品的研发。 因此混配工艺高度依赖企业的技术和经验。1.2.3、 湿电子化学品盈利差异体现在产品等级不同 湿电子化学品跟随下游电子信息产业快速更新换代。湿电子化学品作为电子行 业的配套行业,与下游行业结合紧密,素有“一代材料、一代产品”之说。湿电子 化学品下游应用行业主要有半导体、光伏太阳能电池、LED、平板显示等,下游应 用行业的未来发展趋势对湿电子化学品行业有较大的影响。由于电子产业发展速度 非常快,产品更新换代也很快。新产品的工艺特点和技术要求都会发生变化,这就 要求湿电子化学品与之同步发展,以适应其不断推陈出新的需要。以集成电路制造 为例,根据摩尔定律,集成电路上可容纳的元器件的数目,约每隔 18 个月便会增加 一倍,性能也将提升一倍。集成电路性能与半导体制程紧密联系,应用于集成电路 的湿电子化学品从 G2 等级发展至 G5 等级。产品等级与应用领域对湿电子化学品的盈利能力有较大影响。通用湿电子化学 品的定价模式主要为市场定价,高等级产品和功能湿电子化学品的议价能力较强, 以国际价格为参考并根据企业自身研发成本进行定价。成本方面,主要原材料均为 大宗商品,价格公允透明。因此,国内湿电子化学品厂商的盈利差异主要体现在产 品等级与应用领域的不同。目前,我国湿电子化学品应用领域主要分为三大类,即 半导体市场、光伏市场、平板显示器市场。整体而言,半导体市场对湿电子化学品 生产商的技术实力与生产经验要求最高,故该领域竞争激烈程度相对较低,毛利率 最高。光伏太阳能领域对产品纯度要求低,进入壁垒低,毛利率较低。以江化微为 例, 2019年半导体芯片、显示面板、太阳能电池三大市场的产品毛利率分别为41.47%、 23.58%、27.34%,受产品竞争加剧以及面板价格下滑的影响,显示面板用湿电子化 学品的利润空间有所压缩,毛利率较 2018 年减少 6.27%。认证采购模式使湿电子化学品具备一定的客户壁垒。湿电子化学品有技术要求 高、功能性强、产品随电子行业更新快等特点,且产品品质对下游电子产品的质量 和效率有非常大的影响。因此,下游电子元器件生产企业对湿电子化学品供应商的 质量和供货能力十分重视,常采用认证采购的模式,需要通过送样检验、技术研讨、 信息回馈、技术改进、小批试做、大批量供货、售后服务评价等严格的筛选流程, 而在大尺寸面板,半导体集成电路等高端领域要求更加严格。同时,湿电子化学品 尽管在下游电子元器件中成本占比很小,因此一旦与下游企业合作,就会形成稳定 的合作关系,这会对新进入者形成较高的客户壁垒。 2、 三大应用领域齐发力,湿电子化学品需求持续增长2.1、 半导体:大尺寸晶圆厂投产拉动湿电子化学品需求 2.1.1、 湿电子化学品在晶圆加工中充当清洗和蚀刻功效 湿电子化学品主要有清洗和蚀刻两大类用途。湿电子化学品在半导体制造领域 的应用,主要在集成电路和分立器件制造用晶圆的加工方面,还包括晶圆加工前的 硅片加工以及后端的封装测试环节。集成电路的制造工艺十分复杂,大体上可以分 为光刻(Lithograph)、 蚀刻(Etch)、氧化(Oxidation)、薄膜(Thin film)、化学机械平坦化研磨(CMP)、扩散(DIFF)等几个部分,其中光刻、蚀刻以及辅助性的清 洗/表面预处理工序均需要湿电子化学品参与,具体包括曝光后光刻胶的剥离、灰化 残留物的去除、本征氧化物的去除,还有选择性蚀刻。(1)清洗在集成电路生产中,约有 20%的工序与晶圆清洗有关。集成电路制造过程中的 晶圆清洗是指在氧化、光刻、外延、扩散和引线蒸发等工序之前,采用物理或化学 的方法去除硅片表面的杂质,以得到符合清洁度要求的硅片的过程。晶圆表面的污 染物,如颗粒、有机杂质、金属离子等以物理吸附或化学吸附的方式存在于硅片表 面或自身氧化膜中,晶片生产每一道工序存在的潜在污染,都有可能导致缺陷的产 生和器件的失效,晶圆清洗要求既能去除各类杂质,又不损坏套片。晶圆清洗不同 工序的清洗要求和目的也是各不相同的,这就必须采取各种不同的清洗方法和技术 手段,以达到清洗的目的。湿法化学清洗技术在硅片表面清洗中仍处于主导地位。半导体硅片清洗可分为 物理清洗和化学清洗,化学清洗又可分为湿法化学清洗和干法化学清洗。尽管干法 工艺不断发展,且在某些应用中具有独特的优势,但是大多数晶圆清洗工艺还是湿 法,即利用各种化学试剂和有机溶剂与吸附在被清洗物体表面上的杂质及油污发生 化学反应或溶解作用,通常在批浸没或批喷雾系统内对晶圆进行处理,当然还包括 日益广泛使用的单晶圆清洗方法。目前湿法化学清洗技术的趋势是使用更稀释的化 学溶液,辅之以某种形式的机械能,如超声波或喷射式喷雾处理等。晶圆湿法化学 清洗中所用湿法化学品根据工艺不同及加工品质要求的差异,所用的湿法化学品的 品种也不同。一般将充当晶圆清洗作用的湿法化学品其划分为四类品种,即碱性类 溶液、酸性类溶液、SPM 清洗剂、稀释 HF 清洗剂(DHF)。(2)光刻和蚀刻光刻和蚀刻占芯片制造时间的 40%-50%,占制造成本的 30%。在集成电路的 制造过程中,晶圆厂需要在晶圆上做出极微细的图案,而这些微细图案最主要的形 成方式是使用光刻和蚀刻技术。光刻是利用照相技术将掩膜板上图形转移到晶片上 光刻胶层的过程,包括基片前处理、涂胶、前烘、曝光、后烘、显影等步骤。蚀刻 是继光刻之后的又一关键工艺,将光刻技术所产生的光阻图案,无论是线面或是孔 洞,准确无误地转移到光阻底下的材质上以形成整个积体电路所应有的复杂架构。光刻工序中,基片前处理、匀胶、显影和剥离步骤需要使用湿电子化学品。光 刻所涉及到的光刻胶配套试剂包括用于光刻胶稀释用溶剂、涂胶前用于基片表面处 理的表面处理剂(如六甲基二硅胺烷)、曝光之后的显影剂(四甲基氢氧化铵水溶液)、 去除基片上残余光刻胶的去胶剂(包括硫酸、过氧化氢、N-甲基吡咯烷酮及混合有 机溶剂组成的去胶剂、剥离液等)。蚀刻技术可大略分为湿式蚀刻和干式蚀刻两种,湿式蚀刻技术是最早发展起来 的,目前还是半导体制造中得到广泛应用的蚀刻技术。湿式蚀刻通过特定的溶液与 需要蚀刻的薄膜材料发生化学反应,除去光刻胶未覆盖区域的薄膜,其优点是操作 简便、成本低廉、用时短以及高可靠性,选择合适的化学试剂,湿式蚀刻相比干式 蚀刻具有更高的选择性;湿式蚀刻的缺点是存在侧向腐蚀(钻蚀)的现象,进而导 致图形线宽失真。整体而言,湿式蚀刻因其可精确控制薄膜的去除和对原材料的低 损耗,在今后很长一段时间将无法取代。湿式蚀刻的机制,一般是利用氧化剂将蚀 刻材料氧化,再利用适当的酸将氧化后的材料溶解于水中。另外,为了让蚀刻的速 率延长湿电子化学品的使用时间,常会在蚀刻液中加入活性剂及缓冲液来维持蚀刻 溶液的稳定。湿式蚀刻在半导体制程,可用于硅的蚀刻(多采用混合酸蚀刻液,混 合酸由氢氟酸、硝酸、醋酸组成)、二氧化硅的蚀刻(多采用氟化铵与氢氟酸的混合 液)、氮化硅的蚀刻(多用磷酸蚀刻)、金属(Al、Al-Si)蚀刻(常采用磷酸+硝酸+ 醋酸蚀刻液)、有机材料蚀刻(常采用四甲基氢氧化铵液)。湿法蚀刻和湿法清洗从本质和原理来看有相同之处。从本质来讲,选用的化学 药液的种类和浓度以及应用的场合决定了到底是蚀刻还是清洗。一般而言强酸强碱 用于蚀刻,如高浓度氢氟酸(49%),磷酸(70%)等。低浓度酸碱用于清洗,如水 和氢氟酸体积比为 500: 1 的混合溶液,低浓度氨水和双氧水混合液等。从原理上讲, 湿法清洗也就是轻微的湿法蚀刻。以传统的 RCA 清洗为例,在清洗过程中晶圆表面材料会被氨水腐蚀掉一部分,然后通过电性排斥的原理去除污染颗粒,从而达到清 洗晶圆表面的目的。机台设备方面,湿法蚀刻和清洗均可分为槽式蚀刻(清洗)和 单片独刻(清洗),槽式机台一次性能处理 50 片晶圆,产量较大,它采用浸泡的方 式,整个过程中晶圆不断旋转。槽式蚀刻(清洗)的优点是湿电子化学品消耗较低, WPH(wafer per hour)高,蚀刻均匀性较好。2.1.2、 2020 年国内半导体用湿电子化学品需求量 45 万吨 近两年中国大陆晶圆厂进入投产高峰期。随着我国经济结构调整,新兴产业, 计算机、消费电子、通信等产业规模将持续增长,大大拉动了对上游集成电路需求, 同时,国家信息安全战略层面不断加大对集成电路产业的政策支持力度,我国半导 体市场持续快速增长。2017 年以来,中国大陆晶圆厂进入投产高峰期,根据中国半 导体行业协会数据,2019 年国内 IC 制造业产值突破 2,000 亿元,近五年复合增速达 24.28%。2018 年国内 12 英寸、8 英寸、6 英寸晶圆平均产能分别为 80.4 万片/月、 86.4 万片/月、73.8 万片/月,中国电子材料协会预计,随着多座半导体十二英寸厂投 产,2019 年国内 12 英寸晶圆平均产能将达到 127.5 万片/月,2020 年国内 12 英寸晶 圆平均产能将达到 150 万片/月。12 英寸晶圆加工主导半导体用湿电子化学品需求。12 英寸晶圆面积是 8 英寸晶 圆的两倍,但其制造过程中使用的湿电子化学品达 239.82 吨/万片,是 8 寸晶圆消耗 量的 4.6 倍,6 寸晶圆消耗量的 7.9 倍,我们测算 2018 年我国 6 英寸及以上晶圆生产 中消耗各类湿电子化学品总量约为 28.27 万吨,其中 12 英寸的半导体晶圆生产线消 耗湿电子化学品 20.98 万吨,约占总消耗量的 74.22%。如果再加上 6 英寸以下半导 体晶圆生产线所消耗的湿电子化学品,以及半导体晶圆加工前的硅片加工用湿电子 化学品,我们预计 2018 年我国半导体生产所需湿电子化学品超过 30 万吨。硫酸、双氧水是半导体晶圆加工中需求量最大的两个品种。从具体产品种类看, 2018 年我国晶圆加工用硫酸、双氧水、氨水、氢氟酸、硝酸的消耗量分别为 8.88 万 吨、8.11 万吨、2.29 万吨、1.56 万吨、1.10 万吨,用量最大的硫酸、双氧水主要用 于前道工序的清洗;功能湿电子化学品中,显影液、蚀刻液、剥离液的用量分别为 2.91 万吨、1.52 万吨、0.47 万吨,显影液主要为四甲基氢氧化铵显影液。2020 年国内半导体行业湿电子化学品需求量有望达 45 万吨。半导体产业规模在国 内继续保持快速增长,对湿电子化学品的需求也将保持较高景气。2018-2020 年我国 新增 11 条 12 英寸晶圆生产线和 5 条 8 英寸晶圆生产线, 2020 年国内 12 英寸晶圆产 能将达到 150 万片/月,较 2018 年提升近 70 万片/月,按照 80%的产能利用率,我们 测算新增 12 英寸晶圆产量会带来湿化学品需求增量 16.02 万吨,再加上其他尺寸晶 圆扩产以及硅片加工的需求,我们预计 2020 年半导体行业对湿电子化学品的需求量 约为 45 万吨,并且未来三年将保持 15%以上的增速。制程节点的突破将对湿电子化学品等级提出更高要求。光刻工艺一直是现代集 成电路领域最大的难题,在 1965 年摩尔定律提出后,半导体产业一直以 18 个月为 周期升级半导体工艺,节点制程从 1000 nm 演变到了如今的 7 nm,2019 年三星发布 了新一代 3 nm GAA(闸极全环),台积电宣布正式启动 2 nm 工艺的研发。因此晶圆 代工厂在选择湿电子化学品时,会对其纯度提出更高要求。目前,8 英寸晶圆生产使 用的是 G3、G4 等级湿电子化学品,12 英寸晶圆由于加工方式的改变,对湿电子化 学用量大幅增加,并对湿电子化学品的等级提出更高的要求,普遍需要 G4-G5 等级。 随着集成电路制程节点的突破,G4、G5 高等级湿电子化学品需求占比将逐渐升高。 而国内湿电子化学品达到国际标准且具有一定生产量的 30 多家企业中,技术水平多 集中在 G3 以下(国产化率 80%),G3 及以上的湿电子化学品国产化率仅约为 10%。2.2、 平板显示:大陆面板产业崛起带动湿电子化学品需求增长 2.2.1、 湿电子化学品用于面板制造的显影、蚀刻、清洗等工序 薄膜晶体管是LCD和AMOLED中的重要部件。面板显示行业中两大主流技术, TFT-LCD 和 AMOLED,其制造过程均可分为三大阶段:前段阵列工序(Array)、中 段成盒工序(Cell)以及后段模块组装工序(Mole), 薄膜晶体管(TFT)在两大 显示技术中均发挥了重要的作用。TFT 在 LCD 中充当电路开关的作用,用来控制液 晶显示;AMOLED 全称主动矩阵有机发光二极体,TFT 就是这个“主动矩阵”,即 用晶体管控制的开关矩阵。一片表面平滑、没有任何杂质的玻璃基板,制成可用的 薄膜电晶体,需要重复清洗、镀膜、上光阻、曝光、显影、蚀刻、去光阻等过程, 即 Array 制程。相较于传统非晶硅(a-Si)TFT-LCD 的 Array 制程,OLED 采用低温 多晶硅(LTPS) TFT 作为基板,因此其具体工序及所用湿电子化学品种类有所差异。湿电子化学品主要应用于显示面板制造中Array制程的显影、光刻(蚀刻-剥离) 、 清洗工序。显示面板的前段 Array 制程与晶圆加工相似,不同的是 Array 将薄膜晶体 管制作于玻璃上,而非硅晶圆上。光刻技术是 Array 制程中最为核心的内容,通过带 有目标图形的掩模版对涂有光刻胶的 ITO 玻璃进行曝光,受光部分可经显影液溶解,再将露出的ITO膜层去除并剥离多余的光刻胶,便能得到带有目标图形的ITO玻璃。 湿电子化学品是面板制造中关键的基础材料,基板上颗粒和有机物的清洗、光刻胶 的显影和去除、电极的蚀刻等工序都需要特定的湿电子化学品的参与。(1)清洗面板制造过程中,会经过多次玻璃基板、镀膜玻璃清洗工序,需要湿电子化学 品的参与。如所使用的玻璃基板在受入前使用湿电子化学品对其清洗干净;在溅镀 ITO 导电膜之前的清洗加工;在涂敷光刻胶等之前都要采用湿电子化学品对玻璃基 板进行清洗,以保证对微小颗粒以及所有的无机、有机污染物清除干净,达到所需 要的洁净精度的要求。清洗工序贯穿于 Array 的整个制程过程,对平板显示的成品率 有十分重要的影响。(2)显影光刻胶显影,即通过显影液将经过曝光部分的光刻胶溶解,从而将图形从光罩 转移到光刻胶涂层上。常用的显影液有四甲基氢氧化铵(TMAH)、氢氧化钾(KOH) 等,最常用的是 TMAH,它的纯度高,金属离子含量低,显影清洗后基本不留金属 痕迹,显影效果也非 KOH 所能比。杭州格林达是国内显示面板显影液的主要生产供 应厂商,其电子级四甲基氢氧化铵(TMAH)产品在全球市场约占 25%的份额。(3)蚀刻蚀刻工艺分为两种,干法蚀刻和湿法蚀刻,面板制作多采用湿法蚀刻。湿法蚀 刻指的是利用湿电子化学品通过化学反应进行蚀刻的方法。主要包括 Mo/Al 蚀刻液 (又称铝蚀刻液)、Cu 蚀刻液、ITO 蚀刻液三种。Mo/Al 蚀刻液用于 Array 工艺中钼 /铝金属层的蚀刻,主要组分是磷酸、硝酸、醋酸及添加剂(硝酸钾、氯化钾)。Cu 蚀刻液是由双氧水加添加剂构成的,用在铜电极存在的面板对铜金属层的蚀刻工序 中,这是一种较新的制造工艺,京东方、中电熊猫、华星光电已有使用铜电极的高 世代线投产,使用的也是铜蚀刻液。ITO 蚀刻液用于面板导电膜氧化铟锡(ITO)的 蚀刻,目前,市场上的 ITO 蚀刻液主要为草酸系和无机酸锡,无机酸系一般是硝酸 (或醋酸)、硫酸、添加剂和水的混合溶液。(4)剥离TFT-LCD 制作用的剥离液,是用于去除金属电镀或蚀刻加工完成后的光刻胶和 残留物质,同时防止对下面的衬底层造成损坏,剥离液的配方还必须符合剥离工艺。TFT-LCD 面板剥离液以有机溶剂型为主,主要成分是 DMSO 和 MEA。但有机溶剂 污染大、成本高,水系剥离液前景更加广阔。江化微已经自主研发出了水系剥离液, 剥离效果良好,达到了国外大公司产品水平,目前已大量使用在国内中小尺寸及高 世代面板 G6 线上。(5)面板薄化轻薄是显示器发展的主流趋势,高世代生产线相继投入到薄型化产品的生产中。 其中单片玻璃的厚度从流行的 0.7t、0.63t 逐步薄化为 0.5t、0.4t 甚至 0.3t 以下的玻璃 基板生产的产品都已得到了生产。玻璃基板的薄化工艺分为两种,化学蚀刻和物理 研磨,目前化学蚀刻是 TFT-LCD 业界主流工艺方式,即利用氢氟酸与基板材料二氧 化硅发生化学反应并使其溶解的原理,对面板表面进行咬蚀,将面板厚度变薄,达 到工艺要求的玻璃基板的厚度。2.2.2、 2020 年国内平板显示用湿电子化学品需求量 69 万吨 面板行业两大趋势:全球产能向中国大陆转移,小尺寸OLED渗透率快速提升。 根据 Wind 数据,2015-2019 年全球 LCD 面板出货量整体保持平稳,2019 年出货量 为 1.44 亿片,同比略微下降 0.43%;但大尺寸 LCD 面板出货面积仍稳步增长,2019 年同比增长 5.21%。全球面板产业呈现向中国大陆转移的趋势,2016 年中国大陆面 板厂商出货量首次超越中国台湾地区的出货量,位居全球第二,2017 年底国内面板 产能首次超过韩国位居全球第一, 2019年国内面板在全球市场的占有率超40%。 IHS Markit 预计,到 2023 年中国大陆的面板出货量占全球的出货量比例将进一步提升, 将占全球总产能的 55%。相较于 LCD 面板,OLED 作为一种新型显示面板,具备厚 度小、可弯曲、色彩对比度高等优点,在智能手机等小尺寸应用领域实现渗透率的 快速提升。根据 CINNO Research 数据,2018 年全球 OLED 智能手机销量 3.70 亿部, 渗透率达到 26.3%。由于柔性 AMOLED 工艺的成熟、成本将接近 LCD,OLED 在智 能手机市场将逐渐取代 LCD 成为共识,CINNO Research 预计 OLED 手机渗透率在 2024 年将达到 69.1%。中国大陆面板产业崛起,推动国内湿电子化学品需求增长提速。截至 2018 年底, 中国大陆已经建成投产的 LCD、OLED 面板生产线产能分别为 1.13 亿平米、201.80 万平米。由于 OLED 面板对洁净度的更高要求以及蚀刻工艺的差别,同等面积 OLED 面板制造所需要的湿电子化学品用量比 LCD 更多。根据湿电子化学行业协会数据, 单位面积 OLED 消耗的湿电子化学品量约是 LCD 面板的 7 倍。随着多个高世代及 OLED 面板陆续产线,国内平板显示用湿电子化学品的需求不断增加。2018 年我国 LCD 面板、OLED 面板用湿电子化学品的消耗量分别为 29.68 万吨、4.40 万吨,同 比增长 13.95%、119.61%。从具体产品种类看,剥离液和 Al 蚀刻液是 LCD 面板制 造中用量最大的两个品种,2018 年国内消耗量分别为 9.28 万吨和 4.86 万吨,而 Cu 电极工艺的发展有望带来 Cu 蚀刻液的用量大幅增长;OLED 面板制造中,剥离液和 显影液的用量占比最高,2018 年国内消耗量分别为 1.93 万吨、1.16 万吨。2020 年国内平板显示行业湿电子化学品需求量有望达 69 万吨。京东方、华星 光电、中电熊猫等多条高世代面板产线建成投产,将进一步增加湿电子化学品的配 套需求。根据中国电子材料行业协会的统计数据, 2020 年中国大陆 LCD 面板、 OLED 面板产能分别达 1.69 亿平米、1509 万平米。按照 80%的产能利用率,我们测算 2020 年 LCD、OLED 面板制造对湿电子化学品的需求量分别达 42 万吨、27 万吨,行业 总需求为 69万吨, 2014-2020 年复合增长率为 28.15%,我们预计未来三年将保持 25% 以上的增速。随着平板显示向高世代发展趋势的加快,对产品的良品率、稳定性、 分辨率以及反应时间会有越来越高的要求,相应对高世代线用湿电子化学品提出越 来越高的要求。2.1、 太阳能电池:光伏平价上网打开湿电子化学品长期空间 2.1.1、 湿电子化学品用于太阳能电池片的制绒、清洗、蚀刻工序 湿电子化学品主要应用于太阳能电池片制造的制绒、清洗及蚀刻。太阳能电池工作原理的基础是半导体 P-N 结的光伏效应,晶硅太阳能电池是目前应用最广泛的 电池,其基本结构是在 P 型晶体硅材料上通过扩散等技术形成 N 型半导体层,组成 P-N 结;在 N 型半导体表面制备绒面结构和减反射层,然后是金属电极,而在 P 型 半导体上直接制备背面金属接触。太阳能电池片制造的主要工艺步骤包括:绒面制 备、P-N 结制备、铝背场制备、正面和背面金属接触以及减反射层沉积。晶硅太阳 能电池片制程中所用湿电子化学品,主要应用于太阳能电池片的制绒、清洗及蚀刻, 其中制绒加工部分的湿电子化学品用量占总消耗量的 60%-70%。(1)制绒由于太阳能电池硅片切割过程中的线切作用,硅片表面往往存在 10-20 微米的损 失层,因此制备太阳能电池时需利用化学腐蚀去除这层机械损伤层,并进行硅片表 面织构化,即制绒。通过化学腐蚀在硅片表面形成凹凸不平的结构,延长光在电池 表面的传播路径,减少光反射造成的光损失,从而提高太阳能电池对光的吸收效率。 同时,绒面也能对后续组件封装的光匹配有比较大的帮助,可减少组件封装的损耗。单晶硅采用的碱处理制绒,多晶硅采用的酸处理制绒。目前,晶体硅太阳能电 池的绒面一般是通过化学腐蚀方法制作完成。针对不同硅片类型,有两种不同的化 学液体系的制绒工艺,过程中使用的碱/酸处理剂,以及配合使用的清洗剂,都属于 湿电子化学品范畴。单晶太阳能电池片的制绒加工,是利用单晶片各向异性的腐蚀 特性由强碱对硅片表面进行一系列的腐蚀,形成似金字塔状的绒面,所用处理剂为 氢氧化钠(或氢氧化钾)、异丙醇(或乙醇)、硅酸钠、绒面添加剂等;多晶硅片的 制绒加工,是利用强腐蚀性酸混合液的各向同性的腐蚀特性对硅片表面进行腐蚀, 所用的主要处理剂为硝酸、氢氟酸以及添加剂。多晶硅制绒还有机械刻槽、反应离 子腐蚀(RIE)等其他方法,但机械刻槽要求硅片厚度在 200 微米以上,RIE 设备复 杂且昂贵,相对来说,酸性腐蚀法工艺简单、成本低廉,仍是大多数公司的选择。(2)清洗太阳能电池片清洗加工,一般思路是首先去除硅片表面的有机沾污,因为有机 物会遮盖部分硅片表面,从而使氧化膜和与之相关的沾污难以去除;然后溶解氧化 膜,因为氧化层是“沾污陷阱”,也会引入外延缺陷;最后再去除颗粒、金属等沾污。 因此太阳能电池片的典型清洗的工艺顺序为:去分子(超声清洗)→去离子→去原 子→去离子→水冲洗。根据清洗杂质的类型不同,清洗过程中使用的湿电子化学品 也有所不同。(3)蚀刻经过扩散工序后,硅片表面、背面、周边会形成 N 型层,若不去除边缘的 N 型 层,制成的电池片会因为边缘漏电而无法使用。扩散过程中,硅片表面形成了一层 磷硅玻璃(PSG),磷硅玻璃不导电,为了形成良好的欧姆接触,减少光的反射,在 沉积减反射膜之前,必须把磷硅玻璃腐蚀掉。太阳能电池片的蚀刻工艺也分为干法 和湿法两种,湿法蚀刻应用较多。湿法蚀刻利用 HNO3和 HF 的混合液对硅片表面进 行腐蚀,达到同时去除边缘的 N 型硅和磷硅玻璃的效果。2.1.2、 2020 年国内太阳能电池用湿电子化学品需求量 41 万吨我国太阳能电池片产量持续增长。光伏太阳能作为资源潜力大,环境污染低, 可永续利用,且使用安全的可再生能源,其开发利用受到世界各国高度重视。我国 光伏产业在 2013-2018 年迅速崛起,已经牢牢占据光伏产业链各环节高点龙。2018 年“531 政策”以来,国内光伏产业迎来发展阵痛,新增装机量下滑、产业链价格剧 烈下跌。但受益于海外需求大涨,国内电池片生产端仍在持续增长。据中国光伏行 业协会统计,2019 年国内电池片产量为 108.6 GW,同比上升 24.54%,全球市场占 比达 83%。替代传统能源、光伏产品降本是国内外光伏产业维持增长的驱动力。根 据中国光伏行业协会《2019 年中国光伏产业发展路线图》 ,2025 年国内新增装机量 乐观预期可达 80GW、全球新增装机量乐观预期可达 200GW。从产品类型看,多晶 硅电池片价格快速下滑,企业盈利困难,高效单晶市占率有望呈现不断提升的趋势。氢氟酸、硝酸、氢氧化钾是太阳能电池片制造中用量最多的品种。根据中国电 子材料行业协会的数据,单多晶硅电池片用湿电子化学品的单位消耗量整体接近。 从细分种类看,由于制绒及清洗工艺不同(单晶硅电池片加工为碱制绒、多晶硅电 池片加工为酸制绒),单晶硅电池片对氢氧化钾的用量较大,而多晶硅电池片对氢氟 酸、硝酸的用量较大。2018 年国内太阳能电池用氢氟酸、硝酸、氢氧化钾的消耗量 分别为 10.38 万吨、8.24 万吨、3.71 万吨,我们预计,随着单晶市占率的提升,未来 氢氧化钾的用量及占比将进一步增加。2020 年国内光伏行业湿电子化学品需求量有望达 41 万吨。太阳能电池片生产 对湿电子化学品等级的要求较低,只需达到 G1 等级。随着前几年国内太阳能电池生 产制造业的大规模扩产,湿电子化学品需求量也快速增长,国内众多湿电子化学品 生产企业实现产业链配套,目前该领域的内资企业占有 99%以上的份额。2020 年以 来,通威、隆基等电池片大厂均公布扩产计划,根据 PV Info Link 预测,2020 年新 增电池片产能规划超 40GW。综合考虑新项目投产、落后产能淘汰、多晶产能利用 率走低等因素,我们预计2020年国内太阳能电池片总产量达125 GW,按照3.3吨/MV的单位消耗量,对应湿电子化学品需求量为 41.25 万吨,我们预计未来三年将保持 10%左右的增速。3、 全球湿电子化学品产能重心向亚太转移,政策资金助力国内发展3.1、 以海外为鉴,单点突破是后进者主要成长路径 3.1.1、 全球湿电子化学品的发展与集成电路产业密切相关 湿电子化学品的产生与发展与集成电路产业密切相关。20 世纪 60 年代起,大 规模集成电路及超大规模集成电路相继出现,对集成电路制造用化学试剂要求更高, 湿电子化学品也就是在这一需求市场的变化背景下应运而生,可以说目前国际上在 湿电子化学品技术发展方面的重点还在大规模集成电路的应用领域中。同时湿电子 化学品也成为电子化学品产业中的一个重要门类,其应用市场还渗透到平板显示、 LED、太阳能电池、光磁记录存储体产品等领域中。由于全球湿电子化学品市场的 不断扩大,从事湿电子化学品研究与生产的厂家及机构也在增多,生产规模不断扩 大。全球湿电子化学品的市场格局经历了三个阶段的变化:(1)美欧垄断 20 世纪 80 年代至 90 年代中期,湿电子化学品市场主要由美国、欧洲(主要为 德国、英国等)的几家世界知名的化工企业所垄断,它们约占整个世界湿电子化学 品市场的 65%以上。当时市场占有率较高的主要企业有:德国 Merck(默克)公司、 美国亚仕兰(Ashland)公司、美国奥林(Olin)公司、美国 Mallinckradt Baker 公司、 美国 Arch 公司、英国的 B.D.H 公司等,其中以德国默克为最大,其次是日本的一 些企业,包括关东化学、三菱瓦斯化学、住友化学、和光纯药公司等。(2)日本崛起 自 20 世纪 90 年代后期起,世界湿电子化学品市场格局发生一些转变。主要是 由于日本半导体产业的迅速发展,日本企业的湿电子化学品在生产规模及世界市场 占有率方面都得到了较大的发展。日本湿电子化学品企业还大幅度促进了湿电子化 学品制造技术的提高。(3)亚太主导 21 世纪前十年代的后期起,随着亚洲其它国家、地区(不含日本)在半导体、 平板显示器、太阳能电池等产业快速发展,亚太地区已成为全球湿电子化学品的主 导市场,其中中国台湾地区、韩国等湿电子化学品生产企业市场份额得到明显的扩 大。陶氏、霍尼韦尔、巴斯夫等公司竞相将电子化学品业务重点放在亚太地区,而 部分欧美传统老牌企业在全球市场的份额上出现明显的缩减。全球湿电子化学品市场三分天下,欧美、日本企业份额逐年降低。根据中国电 子材料行业协会数据,2018 年全球半导体、平板显示、太阳能电池三大应用市场使 用湿电子化学品总量达到 307 万吨,全球市场规模 52.65 亿美元。市场格局方面, 2018 年欧美传统老牌企业(包括其亚洲工厂)的市场份额(以销售额计)约为 33%, 较 2010 年减少 4 个百分点;第二块市场份额是由日本的十家左右生产企业所拥有, 总共占 27%左右,较 2010 年减少 7 个百分点;其余市场份额主要是中国台湾、韩国、 中国大陆本土企业生产的湿电子化学品所占领,约占世界市场总量 38%,近年来这 些国家、地区的应用市场大幅扩大,特别是在大尺寸晶圆、高世代液晶面板、OLED 面板等湿电子化学品新市场方面,因此中国台湾、韩国、中国大陆等国家、地区的 湿电子化学品生产能力、技术水平及市场规模都得到快速发展,替代欧美、日本同 类产品的趋势显著。根据中国电子材料行业协会数据,2018 年中国大陆三大应用市 场使用湿电子化学品总量约 92 万吨,对应市场规模约为 110 亿元。3.1.2、 老牌厂商以多元化集团为主,新进者多为专业生产商 全球湿电子化学品行业参与者分为两类:多元化集团与专业型生产商。我们对 境外及中国台湾地区的湿电子化学品生厂商进行了全面梳理,其中欧美企业多为传 统大型化工企业,具有生产历史悠久、品种齐全、生产基地遍及世界各地的特点, 代表性企业如巴斯夫、霍尼韦尔、美国亚什兰、德国汉高,其中巴斯夫 2005 年收购 默克的电子化学业务成为业内领先供应商。日本湿电子化学品生企业中既有住友化 学、三菱化学这样的综合性化学集团,也有 Stella Chemifa、关东化学这样技术领先 的专业型生产商,目前 Stella Chemifa 是世界最大的高纯氢氟酸企业。韩国主要湿电 子化学品企业是东友和东进,它们最早的技术来源于日本,这两家企业都没有韩国 电子产业的大集团背景;由于平板显示在韩国发展迅速,此领域两家韩国公司的产 品市占率较高,但半导体高端晶圆加工用湿电子化学品仍未实现全面国产化。中国 台湾本岛的湿电子化学品生产企业普遍成立于 20 世纪 90 年后,其特点是合资公司 较多,如台湾东应化是东京应化与台湾长春石化的合资公司,伊默克化学由巴斯夫 及关东化学合资,理盛精密是由日本 Rasa 控股。由此可见,湿电子化学品发展初期 需要依赖成熟的化工产业经验、充分的技术积累,大型综合集团的资金优势也使其 在产业整合、生产规模、产品种类等方面具备优势;行业后进者多通过技术引进、 打造专业型湿电子化学品生产商。湿电子化学品品种规格繁多,单点突破是新进者较为可行的成长路径。由于湿 电子化学品的品种多,每种产品的制备工艺路线、设备及对设备材质的要求各不相 同,而且为了保证产品的纯度和洁净度,相关的设备通常不是通用设备。厂商必须 根据不同品种的特性来确定各自的工艺路线,独立设计安装主要产品的生产线。在 湿电子化学品应用领域逐渐细化的背景下,行业后进者往往选择有限的产品进行生 产。我们认为,尽管在发展初期会面临产品结构单一、难以配套供货的劣势,但结 合湿电子化学品行业客户验证壁垒高、技术门槛高的特点,通过持续的研发投入实 现单点突破、打造细分产品的专业化生产商是新进者较为可行的成长路径。 3.2、 国产替代空间广阔,政策资金助力行业发展 3.2.1、 我国湿电子化学品行业起步较晚,高等级产品国产化率较低 我国湿电子化学品产业起步较晚,2006 年进入规模化发展阶段。自 20 世纪七 八时年代中期起至 21 世纪前十年代中期,中国大陆湿电子化学品企业在规模上、技 术水平上都比较低,与国际上的湿电子化学品大型企业相差甚远。21 世纪初期我国 湿电子化学品的产量不足 5,000 吨,2004 年达到了 1.1 万吨左右。自 2005 年以来, 国内光伏产业进入规模发展阶段,对湿电子化学品的性能要求门槛相对较低,国内 不少湿电子化学品企业进入太阳能电池片行业,生产规模得到快速发展。2010 年年 后,平板显示、IC 制造产业相继向中国大陆转移,新市场带来需求量的增加,驱动 我国湿电子化学品行业进入大规模快速发展阶段。同时下游光伏行业的调整使得该 领域湿电子化学品销售价格大幅下滑,一些有一定生产规模和技术水平较高的企业 为追求更高效益而调整产业结构,将更多的湿电子化学品生产量转向半导体、平板 显示市场。国内湿电子化学品产能集中于华东地区,区域发展不平衡。目前国内湿电子化 学品生产企业约有 40 多家,产品达到国际标准,且具备一定生产规模的企业有 30 多家。这些企业中,外资企业占比很少,多为内资企业和合资企业。在我国湿电子 化学品的区域产量分部上,目前华东地区占有绝对的优势,特别是江阴、苏州地区, 包括江阴江化微、苏州晶瑞化学、江阴润玛、江阴化学试剂厂等知名内资企业均位 于该区域。根据中国电子材料行业协会统计,2018 年华东地区的湿电子化学品产量 约占国内总产量的 74%左右,江阴、苏州的产量占比分别约为 41%、20%。近年来, 多个集成电路、面板、太阳能电池项目在中西部落地,如位于湖北的长江存储、武 汉新芯、武汉天马 G6,位于成都、绵阳的京东柔性 AMOLED 线,以及通威在成都、 眉山的电池片项目等。随着下游产业在中西部地区深入布局,湿电子化学品区域发 展不平衡的现象凸显,华东及沿海地区生产商对于内陆的供应需要经过长途运输, 高昂的运输成本下,内陆地区亟须更多就近配套的湿电子化学品供应商。三大应用领域国产化率不一,高等级产品仍待突破。中国大陆湿电子化学品整体技 术水平与海外存在较大差距的原因,一方面大陆相关企业起步较晚,另一方面相比于欧 美日湿电子化学品产生于大规模集成电路时代、韩国湿电子化学品产生于液晶面板的爆 发,中国大陆湿电子化学品是跟随光伏产业发展起来的,因此 2010 年以前内资厂商的技 术水平整体停留在 G1、G2 等级。自 2011 年起我国多家湿电子化学品企业在设备装备上 开始进行大规模投资,工艺技术档次也有迅速的提升,能够逐步满足下游显示面板、集 成电路日益增长的需求。根据中国电子材料行业协会的统计数据,2018 年太阳能电池、 平板显示、半导体领域的湿电子化学品国产化率分别约为 99%、35%、23%(按销售供 应量计) ,太阳能电池市场基本满足生产需求,而平板显示、半导体领域的国产化率反而 较前两年小幅下降,主要原因是高世代面板线和大尺寸晶圆加工对高等级湿电子化学品 的需求增加。具体来看,2018 年我国晶圆加工所用的湿电子化学品,在 6 英寸及 6 英寸 (一般为 0.8-1.2μm、0.5-0.6μm)以下的国产化率为 83%左右,在 8 英寸及 8 英寸以上(含 0.25-0.35μm、28nm-0.18μm)的国产化率不足 20%,大部分产品来自进口;2018 年我国 平板显示所用的湿电子化学品,在 G4.5 至 G5.5 代线的国产化率超过 80%,而在 G6 至 G8.5 代线的国产化率仅为 29%,OLED 面板所需的湿电子化学品目前仍有品种被韩国、 日本和我国台湾地区的少数电子化学品厂商垄断。由此可见,如果未来能够在高端领域 实现进口替代的突破与进展,我国内资湿电子化学品企业发展空间广阔。3.2.2、 政策加码,资金助力,湿电子化学品迎发展契机 由于湿电子化学品在行业发展中的重要性突出,我国在政策上鼓励该产业的发 展。近十年来,湿电子化学品也已成为我国化学工业中一个重要的独立分支和新增 长点,我国把新兴产业配套用电子化学品作为化学工业发展的战略重点之一和新材 料行业发展的重要组成部分,在政策上予以重点支持。“十五”、“十一五”期间我国 把湿电子化学品的研发列入“863”计划;在 2008 年国家科技部下发《高新技术企 业认定管理办法》中,明确列出超净高纯试剂属于国家重点支持的高新技术领域。 在 2014 年工信部和发改委联合制定的《2014-2016 年新型显示产业创新发展行动计 划》中提出,“引导面板企业加强横向合作,对上游产品实现互信互认,鼓励面板企 业加大本地材料和设备的采购力度”。在国家政策的引导下,下游本土领军企业积极 开展对国产材料的合作研发、验证及配套采购,根据《集成电路产业全书》的数据, 中芯国际国产材料累计验证成功项目从 2010 年的 6 个增至 2015 年的 51 个。大基金二期即将开始实质投资,湿电子化学品行业迎来新一轮资金支持。国家 集成电路产业投资基金(大基金)是为促进集成电路产业发展而设立,2014 年 9 月 大基金一期成立,募资规模合计 1,387 亿元。大基金一期(含子基金)投资的 9 家半 导体材料企业中,从事湿电子化学品业务的公司有 3 家,包括晶瑞股份、中巨芯科 技、安集科技。但从大基金一期在上下游各领域的投资额占比来看,材料环节的投 资力度稍显不足,占比不到 2%,低于全球半导体产业链中半导体材料产值 11.08% 的占比。大基金二期于 2019 年 10 月 22 日注册成立,注册资本 2,041.5 亿元,较一 期的 987.2 亿元有显著提升,投资方向上也将加重上游材料行业。近期大基金管理机 构华芯投资表示,大基金二期将在稳固一期投资企业基础上弥补一期空白,加强半 导体设备、材料和 IC 设计等附加值较高环节的投资。随着大基金二期实质投资的正 式启动,湿电子化学品行业有望迎来新一轮资金支持。4、 受益标的(略,详见报告原文)4.1、 江化微(603078.SH):三大领域全系列湿电子化学品供应商4.2、 晶瑞股份(300655.SZ):拳头产品达 G5 等级,打入高端市场4.3、 巨化股份(600160.SH):旗下凯圣氟化学是国内领先的电子级氢氟 酸生产商……(报告观点属于原作者,仅供参考。报告来源:开源证券)如需报告原文档请登录【未来智库】。

失言

高考640,报考材料化学专业,找工作难度大,后悔听信老师的建议

距离2021高考仅剩50多天,考生们以复习工作为重,但是家长们一定要注意个孩子挑选好大学和专业,专业冷热变化快,很难把握大的趋势,18岁的高三毕业生,对于未来的职业生涯也没有很好的规划,所以家长在孩子的志愿填报中,起着举足轻重的作用。最近听到一个小伙伴吐槽,自己高考成绩640多分,但是大学毕业后,找工作特别难,分享给大家,在志愿填报中以免出现难以挽回的损失。毫无疑问,在我们大多数的高三党中,只注重学习应考工作了,对于自己未来到底喜欢什么类型的工作,很少去考虑,所以在志愿填报的时候,很迷茫,这位小伙伴称,当时高考报志愿的时候,因为是农村孩子啥也不懂,父母也不懂,就听从了班主任的建议,报了一个985大学所谓的排名第一的国家级重点专业,材料化学专业。当时录取通知书下来的时候还很高兴,觉得自己上了一个国家重点专业,但是直到他大学毕业找工作的时候。才发现所谓的重点专业,对找好工作一点帮助没有,好单位进不去,差单位觉得不甘心。然后他就在反思自己当初高中那么努力,高考也发挥很好,考了640多分。但是就是在报志愿的时候,随随便便听信了别人的建议,选错了专业,最后追悔莫及。通过这案例可以看出,这个同学的案例非常值得大家借鉴。首先他在高考报志愿的时候犯了两个错误。首先,高考报志愿的时候,随随便便就听信了一些身边人的建议,尤其是高中老师的建议,觉得高中老师说的肯定不会错。高中学习听老师的没有错。但是高考报志愿可不行,老师的职业圈子很窄,他根本不了解当前的就业形势以及重点专业跟就业的区别。其次,对于专业的选择,有点想当然,很多院校的国家重点专业,的确实力强,甚至是A+学科,但未必一定是好就业且高薪的专业。对于一个本科生而言,国家重点专业跟毕业找好工作,啥关系都没有,重点学科也是等到研究生后能够给自己带来一些专业的水准的提升。那么如何选择专业呢?如果不清楚自己的未来就业方向的话,就报考就业热门的专业比如说计算机、通信、电气类等工科专业,还可以报考目前比较热门的大数据、人工智能及其与互联网相关的专业,当然前提是能够学会、学好,不然再热门的专业,毕业也很难找到满意的工作。最后给大家两点建议,第一,高考报志愿的时候一定要深思熟虑。其他人的意见只能做参考,包括我的。你自己一定要亲自去分析,看看你想报的专业到底是干什么的。第二,如果你不知道某个大学哪个专业就业好,工资高很简单,给你一个最简单的建议,找全国最热门的应届生招聘信息网,去查看热门就业岗位和起薪。对此大家有何看法?可以留言讨论。

梦中人

硬核教授团队研究成果在Journal of Materials Chemistry A上发表

日前,杭师大材料与化学化工学院朱雨田教授团队通过静电纺丝与超声负载相结合的方法,构筑了具有多孔三维网络结构和微裂纹结构的柔性可拉伸应变传感材料。相关研究成果以 “A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range”为题发表在Journal of Materials Chemistry A (2021, 9, 1795-1802, IF=11.301)。柔性可拉伸应变传感材料是未来发展智能材料的重要研究方向,其在电子皮肤、人机交互、人体健康监测、人体运动监测等领域具有广阔的应用前景。其中,应变检测下限和应变响应范围是应变传感材料的两个重要性能指标,如何实现在超宽应变响应范围的同时兼具超低应变检测下限仍然是目前面临的一个挑战。朱雨田教授团队利用静电纺丝技术制备了具有多孔三维网络结构的聚氨酯纤维膜,然后通过超声负载方法,在其表面包覆带有微裂纹结构的碳纳米管导电层,最后经裁剪、组装电极制备出了碳纳米管包覆的聚氨酯纤维膜柔性可拉伸应变传感材料。该制备方法简单,成本低,易于大规模生产。材料的传感机理及应变刺激响应演示实验研究结果表明,多孔三维导电网络结构能够赋予该应变传感材料超宽的应变检测范围(0.05% ~ 600%),同时导电层表面的微裂纹结构可使该材料能够灵敏地检测到低至0.05%的微小应变刺激,即该柔性可拉伸应变传感材料兼具超宽的应变响应范围和超低的应变检测下限。此外,该材料表现出快速响应(75 ms)和良好耐久性等优异性能,既可以感知琴声引起的细微振动,又能够检测关节运动产生的大应变刺激,在可穿戴器件、软体机器人、电子皮肤等领域具有潜在应用。应变传感性能材料与化学化工学院联合培养硕士生李华为该论文的第一作者,朱雨田教授和李勇进教授为通讯作者,杭州师范大学为第一通讯单位。该论文工作得到了国家自然科学基金(52073078, 21774126) 、浙江省杰出青年科学基金(LR20E030003) 等项目支持。人物简介朱雨田,教授、博导、浙江省杰青。致力于高分子复合材料结构调控与性能研究。先后主持国家自然科学基金项目4项、省部级项目4项,获省级自然科学二等奖1项(第一完成人)。以第一或通讯作者身份在Angew. Chem. Int. Ed.、ACS Nano等SCI期刊上发表论文60余篇,他引1500余次,申请发明专利5项。李勇进,教授、博导、浙江省杰青、浙江省钱江特聘教授、教育部新世纪优秀人才。主要从事高分子反应性加工、高分子成型新方法及高分子凝聚态物理研究。以通讯作者在Macromolecules等SCI期刊发表论文140余篇,他引4000余次,H-Index 35。获授权美、日和中国专利48项。主持国家重点研发计划、国家自然科学基金重大项目课题等国家级项目7项,省部级项目5项。曾获国际高分子加工学会Morand Lambla Award、冯新德高分子奖、高分子加工新锐创新奖等奖项。李华,杭州师范大学与辽宁石油化工大学联合培养硕士研究生,主要从事高分子柔性传感材料研究。来源:材料与化学化工学院编辑:朱镕华玲责任编辑:田盛 监制:周志琴出品:党委宣传部、校融媒体中心