欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2014年考研数学二真题与解析

离形去知
参两
去百度文库,查看完整内容>内容来自用户:linhui_elsa2014年考研数学二真题与解析一、选择题1—8小题.每小题4分,共32分.11.当x0时,若ln(12x),(1cosx)均是比x高阶的无穷小,则的可能取值范围是()(A)(2,)(B)(1,2)(C)(,1)12(D)(0,)12【定位】无穷小比较的定义,等价无穷小代换,简单题【详解】当x0时,ln(12x)~(2x)2x,(1cosx)~(x)21121112x,要满足题目要21求需要2,解得(1,2),应该选(B).12.下列曲线有渐近线的是(A)yxsinx(C)yxsin(B)yxsinx21x(D)yxsin21x【定位】求渐近线的问题,属于课堂强调的基本题型【详解】对于选项(A),任意点上均有定义,故无铅直渐近线;lim(xsinx)不存在,故无水平渐近线;xklimxxsinxsinx1lim1xxx(点评:某些同学到此处就得出斜渐近线存在是错误的,必须检查b是否存在)blim(xsinx1x)limsinx不存在,故无斜渐近线;xx1x1lim1sin11,blim(xsin11x)limsin10,对于选项(C),klimxxxxxxxxx所以存在斜渐

2014年考研数学二真题与解析

不顾于虑
纳布科
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者2014年考研数学二真题与解析1.当时,若,均是比高阶的无穷小,则的可能取值范围是()(A)(B)(C)(D)【详解】,是阶无穷小,是阶无穷小,由题意可知所以的可能取值范围是,应该选(B).2.下列曲线有渐近线的是(A)(B)(C)(D)【详解】对于,可知且,所以有斜渐近线应该选(C)3.设函数具有二阶导数,,则在上()(A)当时,(B)当时,(C)当时,(D)当时,【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间上凹凸的定义比较熟悉的话,可以直接做出判断.显然就是联接两点的直线方程.故当时,曲线是凹的,也就是,应该选(D)【详解2】如果对曲线在区间上凹凸的定义不熟悉的话,可令,则,且,故当时,曲线是凹的,从而,即,也就是,应该选(D)4.曲线上对应于的点处的曲率半径是()(A)(B)  (C) (D)【详解】曲线在点处的曲率公式,曲率半径.本题中,所以,,对应于的点处,所以,曲率半径.应该选(C)5.设函数,若,则()(A)   (B)    (C)    (D) 【详解】注意(1),(2).由于.所以可知,,.6.设在平面有界闭区域D上连续,在所以应该选(

2007年考研数学数学二真题及答案解析

固不及质
人之性邪
去百度文库,查看完整内容>内容来自用户:真题铺2007年硕士研究生入学考试数学二试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)当时,与等价的无穷小量是(A). (B). (C). (D). [B]【分析】利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当时,有;;利用排除法知应选(B).(2)函数在上的第一类间断点是x=(A) 0. (B) 1. (C). (D). [ A ]【分析】本题f(x)为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。【详解】f(x)在上的无定义点,即间断点为x=0,1,又,,可见x=0为第一类间断点,因此应选(A).(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设则下列结论正确的是(A). (B).(C). (D). [C]【分析】本题考查定积分的几何意义,应注意f(x)在不同区间段上的符号,从而搞清楚相应积分与面积的关系。【详解】根据定积分的几何意义,知F(2)为半径是1的半圆面积:,F(3)是两个半圆面积之差:=,因此应选(C).(4)设函数f(x【根据可微的定义,知函数(17)【

2019年考研数学二真题及答案解析

小艾
五材
去百度文库,查看完整内容>内容来自用户:跨考考研Borntowin2019年考研数学二真题及答案解析——跨考教育数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上....(1)当x0时,若xtanx与x是同阶无穷小,则kk(A)1.(C)3.【答案】C【解析】xtanxx(x(B)2.(D)4.131xo(x3))~x3,故k3.33(2)设函数yxsinx2cosx3x22的拐点坐标为(B)0,2.(A),22(C),2【答案】C【解析】y'sinxxcosx2sinxxcosxsinx(D)33,22y''cosxxsinxcosxxsinx令y''0得x0或x当x时y''0;当x时,y''0,故(,-2)为拐点(3)下列反常积分发散的是((A))20xexdx(B)0xexdx(C)0arctanxxdx(D)dx201x21x【答案】(D)【解析】(A)0xexdx0xdexxex0exdx1,收敛..0Borntowin(B)0xexdx21x221edx,

2008年考研数学二真题及解析

極真拳
感相
去百度文库,查看完整内容>内容来自用户:20103110103182008年考研数学二试题分析、详解和评注一,选择题:(本题共8小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)=x2(x−1)(x+2),则f′(x)的零点个数为【】.(A)0.【答案】应选(D).(B)1.(C)2.(D)3.【详解】f′(x)=4x3+3x2−4x=x(4x2+3x−4).令f′(x)=0,可得f′(x)有三个零点.故应选(D).a∫(2)曲线方程为y=f(x),函数在区间[0,a]上有连续导数,则定积分xf′(x)dx在几何上0表示【】.(A)曲边梯形ABCD的面积.(B)梯形ABCD的面积.(C)曲边三角形ACD面积.【答案】应选(C).(D)三角形ACD面积.∫∫∫【详解】axf'(x)dx=axdf(x)=af(a)−af(x)dx,000∫∫其中af(a)是矩形面积,af(x)dx为曲边梯形的面积,所以axf'(x)dx为曲边三角形ACD00的面积.故应选(C).(3)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意的常数)为通解的是【】.(A)y′′′+y′′−4y′−4y=0.(B)y′′′+y′′+4y′+4y=0.(C)y′′′−y′′−4y′+4y=0.(D)y′′′−y′′+4y′−4y=0.【答案】应选(D).【详解】由y=C1ex+C2cos2x+C3sin2x,可知其特征根为λ1=1,λ2,3=

2011年考研数学二真题及解析

夫子言道
果保汝矣
去百度文库,查看完整内容>内容来自用户:氵氺o释NBF辅导,真正为考研人着想的辅导!www.nbf365.cn2011年全国硕士研究生入学考试数学二试题(NBF真题计划:公共课最准,专业课最全!)一、选择题:1-8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上。(1)已知当x→0时,f(x)=3sinx−sin3x与cxk是等价无穷小,则()(A)k=1,c=4(B)k=1,c=−4(C)k=3,c=4(D)k=3,c=−4【答】应选C【分析】本题主要考查等价无穷小量的概念,用洛必达法则或泰勒公式求极限的方法即可求得。另外,用排除法也可求解,此题属于基本题。【解法1】根据题意及洛必达法则有1=limx→03sinx−sincxk3x=limx→03cosx−ckx3cosk−13x=limx→0−3sinx+9ck(k−1)sin3xxk−2=lim−3cosx+27cos3xx→0ck(k−1)(k−2)xk−3=ck(k24−1)(k−2)1limk−3x→0x由此可得k=3,c=4,因此选C.【解法2】根据泰勒公式有此外,用排除法也可得到正确选项。首先,因为3sinx−3x−sin3x,即3sinx与sin3x是等价无穷小量,所以3sinx−sin3x是NBF考研辅导,全程包过,不过退款!QQ客服:100940168NBF辅导,真正为考研人着想的辅导!www.nbf365.cn比3x高阶的无穷小量,从而也是比cx(c≠0)高

2007年考研数学二真题及解析

芈后传
此以域退
去百度文库,查看完整内容>内容来自用户:20103110103182007年研究生入学考试数学二试题一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当x→0+时,与x等价的无穷小量是(A)1−ex(B)ln1+x(C)1+x−1(D)1−cosx1−x[](2)函数f(x)=(ex+e)tanx在[−π,π]上的第一类间断点是x=⎛1⎞x⎜ex−e⎟⎝⎠()(A)0(B)1(C)−π2(D)π2(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半∫圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=xf(t)dt,0则下列结论正确的是:(A)F(3)=−3F(−2)4(C)F(3)=3F(2)4(B)F(3)=5F(2)4(D)F(3)=−5F(−2)4(4)设函数f(x)在x=0处连续,下列命题错误的是:[](A)若limf(x)存在,则f(0)=0(B)若limf(x)+f(−x)存在,则f(0)=0.xx→0x→0x(B)若limf(x)存在,则f′(0)=0(D)若limf(x)−f(−x)存在,则f′(0)=0.xx→0x→0x[]()(5)曲线y=1+ln1+ex的渐近线的条数为x您所下载的资料来源于弘毅考研资料下载中心获取考研资料,请访问http://www.hykaoyan.net(A)0.(B)1.(C)2.(D)3.[](6

考研 急求2011版李永乐真题解析 数一数二数三电子版

無花果
理事
你好,获取真题的途径主要有以下五个:一是直接找该大学的学生学长要;二是去该大学找找校内或周边的复印店,一般复印店都会留有以前的试卷以方便后人来复印;三是去该大学找校内书店、考研代理机构来代购;四是上该校BBS、考研论坛之类的论坛找;五是上淘宝之类的购物网站搜索购买。祝你成功:)

2013年考研数学二真题15题解析

必入而叹
反复嚼
去百度文库,查看完整内容>内容来自用户:我心纳幽兰2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1选择题:1~8小题,小题,每小题4分,共32分.下列每题给出的四个选项中,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.指定位置上.合题目要求的,请将所选项前的字母填在答题纸...其中α(x)<(1)设cosx−1=xsinα(x),(A)比x高阶的无穷小(C)与x同阶但不等价的无穷小【答案】(C)π2,则当x→0时,α(x)是(B)比x低阶的无穷小(D)与x等价的无穷小()【解析】Qcosx−1=x⋅sinα(x),cosx−1~−12x21∴x⋅sinα(x)~−x22又Qsinα(x)~α(x)1∴sinα(x)~−x21∴α(x)~−x2所以选(C).n→∞∴α(x)与x同阶但不等价的无穷小.(2)(设函数y=f(x)由方程cos(xy)+lny−x=1确定,则limn[f()−1]=2n)(A)2【答案】(A)(B)1(C)-1(D)-2【解析】因为x=0时,y=1即f(0)=1.2Qlimnf()−1=lim2⋅n→∞nn→∞又Qcos(xy)+lny−x=12f()−f(0)n=2f'(0)=2y'x=02−0n1⋅y′−1=0,y将x=0,y=1,代入上式得y′=1.∴选(A).两边对x求导得:−sin(xy)