欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

关于IBM、HP等中低端存储详细综合分析报告。

鬼潜艇
宏大而辟
中产阶级的品质可以反映出一个国家的发展前景,而中端存储就是外部磁盘存储市场的中产阶级,不仅起着承上启下的作用,也是整个市场状况的晴雨表。 Gartner和IDC在3月初公布的2005年外部磁盘存储市场调查报告都得出了全年收入增长达两位数(11.2%和12.1%)的结论,其中中端存储系统的贡献最大: 在过去两年中,按季度计算的收入增长率(与一年前同期相比),EMC的CLARiiON家族除2005年第三季度为20%,其余11个季度都超过了30%!尤其在Symmetrix DMX-3推出之前,是CLARiiON的出色表现弥补了高端存储系统相对低迷造成的损失; 惠普(HP)2005年第四季度和全年的收入增长均略低于市场平均水平,但EVA中端存储阵列的“强势”增长和高端XP系列的增长帮助其保住了第二的位置; 2005年全年IBM收入增长在25%左右,第四季度的增长率更接近50%,而中端存储系统收入在4Gb/s的TotalStorage DS4800的推动下增长超过40%; 以中端存储为主的戴尔(Dell)全年增长约40%,第四季度更接近60%; Network Appliance(NetApp)第四季度和全年的收入增长均在23%左右,在FAS3000系列的推动下超越Sun排名第六…… 可是,上述厂商能否代表整个市场呢?当然!根据Gartner的统计,加上HDS(日立存储系统)和Sun,前七大厂商在2005年第四季度和全年所占的市场份额分别为83.5%和81.6%,比一年前的75.8%和77.8%有所上升。由此可见,大型厂商对存储行业的控制是相当……的强。 从上面的分析可以看到,把中端存储系统的研究范围圈定在EMC、惠普、IBM、HDS、戴尔、NetApp和Sun这前七大存储系统厂商的相应产品中应该具有足够的代表性。不过,我们下面只列举了其中六家的产品,因为戴尔的中端存储系统OEM自EMC。事实上,EMC CLARiiON家族的骄人业绩便有戴尔一份功劳。 如何界定中端存储系统? 在中端存储系统的界定上,我们主要参考各厂商自己的定义:部分厂商对自己的产品有明确的分类——IBM和HP用“Mid-range”,Sun用“Midrange”,一目了然;其他厂商虽然没有写得这么直白,但每个系列产品的定位大家也都是很清楚的。不同厂商的中端存储系统在配置上会有高下之分,不过并不足以形成明显的分野。 严格说来,公认的中端存储系统范围要更小一些。举例来说,HDS将TagmaStore NSC55定位在中端存储系统中的高端,表面看来其最大72TB的容量确实比地道的中端系统TagmaStore AMS500还低,可实际上NSC55与高端的TagmaStore USP有着密切的血缘关系,称之为入门级的高端存储系统恐怕更为合适——HDS的两个OEM客户HP和Sun就是这么做的。同样的规则也可以解释IBM为何要把最大容量只有38.4TB的TotalStorage DS6800划入企业级(Enterprise,相当于“高端”)存储系统的行列。 NSC55与DS6800偏小的容量部分归因于它们仅支持高性能的FC硬盘驱动器(最大300GB),而那些只能使用大容量的SATA/PATA硬盘驱动器(最大500GB)的存储系统也不能算作中端——如最大容量58TB的StorageTek FlexLine FLX680。最大容量96.7TB的NearStore R200也属于这类产品,NetApp将它与NearStore虚拟磁带库(VTL)一并列为近线存储(Nearline Storage)是很合理的。 中端存储系统应该在功能、性能、容量和价格之间取得较好的平衡,并能适应主存储和近线存储等多种不同的应用需求。高性能的FC硬盘驱动器传统上一直是主存储的首选,但SATA硬盘驱动器的经济性对非实时交易的数据仓库、目录服务、软件开发和灾难恢复系统等性能“够用就好”的应用具有越来越难以抗拒的吸引力,更不要说非常在意容量和单位价格的二级存储了,因此同时支持FC和SATA硬盘驱动器已成为中端存储系统必备的素质。 性能与经济性不可偏废 众所周知,FC(确切地说是FC-AL)和SATA是两种互不兼容的接口标准,对此最常见的解决方法是同时提供两种内部接口不同而外部统一为FC连接的磁盘柜,EMC CLARiiON CX家族和HDS Thunder 9500V系列就是这种做法的代表,我们不妨称之为磁盘柜层面的(FC和SATA)混用。 2004年4月,HP宣布联合希捷(Seagate)推出FATA(Fibre Attached Technology Adapted,光纤连接技术改造)硬盘驱动器,并于当年7月在其EVA 3000/5000中提供了250GB FATA硬盘驱动器的选项。同月,FATA所代表的“低成本、高容量FC接口硬盘驱动器”获得了FCIA(Fibre Channel Instry Association,光纤通道工业协会)的认可。 FATA硬盘驱动器相当于改用FC接口的SATA硬盘驱动器,从而能够与传统的FC硬盘驱动器使用同一种磁盘柜,用户可以根据实际需要随意选择高性能而昂贵(FC)或大容量且廉价(FATA)的硬盘驱动器,提高了灵活性和任务弹性。与SATA相比,FC接口电路较为复杂,加之产量较小,使得FATA硬盘驱动器的价格要高于SATA硬盘驱动器,不过磁盘柜的精简可以大致抵消这一不利因素。此外,EMC Symmetrix DMX-3企业级存储系统中采用的LC-FC(Low Cost Fibre Channel,低成本FC)硬盘驱动器实质上也等同于FATA,但目前尚不清楚会否应用在下一代CLARiiON产品中。 得益于FC的双端口特性,FATA(或LC-FC)硬盘驱动器的可靠性略高于SATA硬盘驱动器,不过与“正宗的”FC硬盘驱动器还差得远,出故障的几率较大。同时,FATA/SATA硬盘驱动器动辄数百GB的容量和相对缓慢的速度使RAID组重建的时间成倍增加,在此期间出现第二个故障硬盘的风险很高。为了避免由此导致的数据丢失,那些能够在同一RAID组中有两个硬盘出故障的情况下保护数据的RAID技术开始受到青睐,如HDS所采用的RAID 6(从RAID 5发展而来)和NetApp独有的RAID-DP(RAID Double Parity,建立在RAID 4基础上的双校验)。 4GFC和iSCSI:旗鼓相当,冲线在即 4Gb/s FC(4GFC)和iSCSI都是中端存储系统领域的热点话题,它们代表了两个方向——单纯提升速度和扩展连接能力。 4GFC从2005年开始升温,由于从那时起只有对其持保守态度的EMC更新了高端存储系统(Symmetrix DMX-3),因此中端存储系统理所当然地成为4GFC发展的主战场。 2005年6月IBM率先以TotalStorage DS4800响应4GFC,HDS TagmaStore AMS系列随后跟进,HP StorageWorks EVA4000/6000/8000也在半年之后加入行列。EMC虽然升级了CLARiiON CX300/500/700,却没有4GFC什么事,理由是整个大环境还没有成熟。 现在支持4GFC的HBA和交换机已不难获得,问题在于硬盘驱动器还没有到位,甚至AMS系列和EVA4000/6000/8000的后端磁盘接口也还停留在2Gb/s FC(2GFC),只有DS4800刚刚用上支持4GFC的磁盘柜。 当然,在设计得当的情况下只有主机端连接达到4Gb/s的速度一样可以提高性能。IBM正计划为高端的DS6000和DS8000系列提供4GFC支持,EMC也很可能在第二季度推出支持4GFC和iSCSI、代号Sledgehammer(大锤)的新一代CLARiiON系统。 HP为EVA提供的iSCSI连接选件(上),其功能类似于博科iSCSI网关(下) 与对待4GFC的消极态度相比,EMC在iSCSI上的表现要积极得多,因为iSCSI能够让用户在缺乏FC基础设施的环境中构建(IP)SAN,扩大了市场覆盖。由于CLARiiON CX300/500/700中没有必需的以太网支持,EMC专门推出了仅支持iSCSI的CLARiiON CX300i和500i。类似的问题也困扰着其他厂商——HP的解决之道是通过一个类似iSCSI网关设备的HP StorageWorks EVA iSCSI连接选件使EVA能同时支持FC和iSCSI,而HDS让AMS系列在2006年初支持iSCSI的计划还没有实现。在这方面以NAS起家的NetApp显然得天独厚,其FAS3000从一开始就FC、iSCSI和NAS通吃,iSCSI SAN市场排名第一(2005年26.2%)真不是盖的。 IBM的策略与EMC形成鲜明对照——充当4GFC排头兵的同时却对iSCSI很不感冒。iSCSI SAN市场规模还不够大(2005年增长130%之后仍不到1亿美元)的解释固然有理,蓝色巨人在iSCSI上因过于激进屡遭挫折的历史恐怕也不能忽略。 粗略统计下来,前七大厂商现有的中端存储系统中4GFC(HDS、HP、IBM、Sun/StorageTek)和iSCSI(Dell、EMC、HP、NetApp)的支持者打了个平手。可以肯定的是,这些产品的下一代都会同时支持4GFC和iSCSI,而EMC的Sledgehammer将是第一个。 EMC CLARiiON:老当益壮,换代可期 在过去的一年中,几乎所有主要的存储系统厂商都推出了新一代的中端存储产品,只有EMC仍在靠两年前就已问世的CLARiiON CX300/500/700打天下。 不过,这两年中EMC没有停止对CLARiiON CX300/500/700的更新和升级。大约在一年前,EMC推出了支持本地iSCSI的CLARiiON CX300i和CX500i,它们采用1Gb以太网接口,而不是CLARiiON CX300和CX500的2Gb FC接口。最高端的CLARiiON CX700没有相对应的iSCSI版本。显然,目前的CLARiiON CX还不能在一个系统内同时支持FC和iSCSI。 又过了半年,EMC宣布对CLARiiON家族进行升级,新版本的CLARiiON包括CX300s、CX500s和CX700s,后面增加的“s”代表scale。硬盘驱动器和存储控制器之间的点对点连接取代了过时的FC-AL(Fibre Channel arbitrated loop,光纤通道仲裁环路)架构。新的结构改善了错误隔离,使系统能检测到将要出故障的硬盘驱动器,这在FC-AL的设计下是比较困难的。EMC将这种点对点连接称为“UltraPoint”,并特别说明不是一种交换式设计,后者能够形成冗余性更好的架构。用户可通过支持UltraPoint的新磁盘阵列柜升级现有的CLARiiON型号。内建的直流电源支持允许电信、军事、油气勘探公司等机构在野外通过电池来驱动CLARiiON。 被引用了两年的一张“合影”:CX300、CX700和CX500 新的CLARiiON软件功能包括:虚拟逻辑单元号(Virtual LUN),允许用户移动CLARiiON上的数据时无需中断应用;为改善SnapView和MirrorView产品的复制能力,加入了一致性组支持(MirrorView/S),可以在跨多个卷的时间点和远程复制时保证数据的一致性;能够拷贝的LUN数量加倍——MirrorView从50到100,SnapView从100到200;SAN Copy的升级SAN Copy/E允许用户在CX系列和CLARiiON AX100之间复制,而以前用户只能在CX500和CX700之间复制。EMC宣称,新的软件允许用户从像分支办公室这样的“边缘”位置向中央数据中心等“核心”位置移动数据,供备份、恢复和报告使用。CLARiiON管理软件Navisphere Manager也进行了升级,能从一个控制台管理AX100和CX系列。 对4Gb/s FC(4GFC)的支持没有在这次升级中加入进来,因为当时EMC认为4GFC的环境还没有真正形成——支持4GFC的交换机、HBA和硬盘驱动器相对缺乏。前不久有消息称,EMC可能会在今年4月或6月推出支持4GFC和iSCSI连接的新一代CLARiiON CX。 CLARiiON CX300/500/700支持最大容量300GB的FC硬盘驱动器和最大容量500GB的SATA硬盘驱动器,两种磁盘柜可同时使用。支持RAID 0, 1, 10, 3, 5,一个RAID组最多可包括16个硬盘驱动器。可配置全局热备份(hot spare)磁盘,重建优先级可调整。 HDS AMS:可靠与速度兼顾 2005年7月,HDS推出了4款模块化存储产品,即TagmaStore工作组模块化存储系统(Workgroup Molar Storage)WMS100,TagmaStore可调整模块化存储系统(Adaptable Molar Storage)AMS200、AMS500和TagmaStore网络存储控制器(Network Storage Controller)NSC55,其中两款AMS较为符合人们通常对中端存储的定义。 AMS200和AMS500的目标市场均为中型企业,分别用来取代Thunder 9530V入门级存储系统和Thunder 9570V高端模块化存储系统。两者均采用共享总线的双控制器架构(可单控制器),数据缓存容量分别是1GB~4GB和2GB~8GB,最大LUN数量分别为512个和2048个。AMS200可升级为AMS500。 最初只有AMS500支持4Gb/s FC(4GFC),现在AMS200以及更低端的WMS100页都支持4Gb/s主机连接。三款产品均具有4个4Gb/s FC主机端口,能够更充分地发挥带主机存储域的512个虚拟端口的作用。不过,它们的后端磁盘接口还是2Gb/s FC-AL的规格。 HDS TagmaStore AMS200和AMS500 AMS200和AMS500的控制器为4U规格,内置15个FC硬盘驱动器。AMS对FC和SATA混插(intermix)的支持是通过外接不同类型的磁盘柜(3U,15个驱动器)实现的:AMS200可外接6个,最大硬盘驱动器数量105个,总容量40.5TB(300GB FC硬盘驱动器和400GB SATA硬盘驱动器,下同);AMS500可外接14个,最大硬盘驱动器数量225个,总容量67.5TB(全FC)或88.5TB。 容量更大而可靠性相对较低的SATA硬盘驱动器的使用,意味着RAID组在重建过程中遭遇又一次硬盘故障的风险大为增加,因此AMS200和AMS500除常见的RAID 1, 10, 5之外,加入了对采用双校验盘的RAID 6(6D+2P)的支持。与NSC55和WMS100不同的是,AMS200和AMS500还支持强调性能而毫无冗余度可言的RAID 0,但作用对象仅限于FC硬盘驱动器。通过支持动态备份盘(热备援)的漫游,AMS200和AMS500减少了内部拷贝的工作,阵列的性能也会得到一定的提高。 AMS200和AMS500不仅可以作为FC SAN的成员,还具备多达8个的NAS连接能力,支持NFS v2/v3、CIFS、FTP和用于管理的HTTP等网络协议。此外,HDS还计划在2006年上半年为AMS200和AMS500提供本地iSCSI连接能力。 高速缓存分区管理(Cache Partition Manager)在AMS200和AMS500所应用的技术中最为引人注目,它将高速缓存进一步细分,每个高速缓存划分的部分称为分区(AMS200最多8个,AMS500最多16个),并有效地使用。LUN定义于WMS和AMS存储系统内,可以分配给一个分区,客户可以指定分区的大小。优化主机收集/发送的数据的方法就是根据从主机收到的应用(数据),将最适合的分配分配给LUN。视应用的特性,可以用多种不同的方法优化同一AMS存储系统。 AMS200和AMS500支持的其他软件包括Hitachi Resource Manager工具包、HiCommand套件、Hitachi ShadowImage In-System Replication、Hitachi Copy-on-Write Snapshot、Hitachi Volume Security、Hitachi Data Retention Utility、Hitachi Dynamic Link Manager、Hitachi HiCommand Storage Services Manager(AppIQ),此外AMS500还多一个用于远程拷贝和D2D备份的Hitachi TrueCopy Remote Replication(同步)。 HP EVA:循序渐进,左右逢源 2005年5月中,惠普(HP)在其年度StorageWorks大会上宣布推出企业虚拟阵列(Enterprise Virtual Array,EVA)家族的最新产品EVA4000/6000/8000。 EVA4000和EVA8000分别取代问世已有两年之久的EVA3000和EVA5000,原有的两款产品间过大的空档被EVA6000填补。三款产品均采用4U机架规格的FC双HSV200控制器,一个42U的机柜(cabinet)最多可以容纳12个M5314B磁盘柜,因此EVA8000在单个机柜内支持的硬盘驱动器数量为168个,要达到240个的最大数量还需要增加一个工具机柜。 EVA4000 2C1D、EVA6000 2C4D和EVA8000 2C12D FATA(Fibre Attached Technology Adapted,光纤连接技术改造)是EVA4000/6000/8000从EVA3000/5000继承的“遗产”中最值得一提的技术。作为一种相对廉价的大容量硬盘驱动器,FATA硬盘驱动器采用FC接口——而不是常见的SATA接口,因此可以与高性能的FC硬盘驱动器使用同样的磁盘柜,这也是同代的其他中端存储系统所欠缺的能力。 EVA家族采用将每个逻辑卷都分摊到所有硬盘上的Vraid(Virtual RAID)技术,以充分利用每块硬盘的性能。EVA4000/6000/8000可管理多达1024个虚拟磁盘(256个/HBA),每个虚拟磁盘的容量在1GB到2TB之间,能够以1GB为增量动态扩展容量(需要主机操作系统支持)。 今年2月,EVA家族成为业内第一批能够同时支持iSCSI和4Gb/s FC(4GFC)连接的中端存储系统。通过使用具有2个以太网(GbE)端口和2个FC端口的HP StorageWorks EVA iSCSI连接选件,EVA家族可以获得iSCSI连接能力;而4GFC连接仅限于主机端口,磁盘端口仍然是2Gb/s(2GFC)。此外,还支持EVA阵列连接到XP阵列上以提高虚拟化能力并允许从HP的单一界面对多个厂商的阵列的数据管理。去电子市场转一圈啥都有了...

2019年半导体设备行业深度研究报告

猎人们
请问
去百度文库,查看完整内容>内容来自用户:平家宏2019年半导体设备行业深度研究报告目录•一、为什么当前亟需提升国产化率?•二、国产化的推动因素——政策、资金、产业•三、半导体设备市场竞争格局与国产化进度•四、相关公司发展逻辑梳理•五、风险提示总体判断•我国半导体市场供需两层不匹配,国产化率亟需提升一方面,终端产品供需不匹配。2018年中国集成电路市场规模1550亿美元,但国产集成电路规模仅238亿美元,国产化率仅约15%;另一方面,制造端的设备供需不匹配。国内半导体设备市场规模约145亿美元,但国产设备规模仅14亿美元不到,国产化率仅约10%。因此,从产业发展的角度,一方面,国内半导体制造领域仍有较大发展空间;另一方面,制造领域的设备仍有较大的国产提升空间。•贸易战对我国半导体核心技术“卡脖子”半导体产业链中,上游半导体设备和中游制造对美依存度极高,核心芯片的国产化比率极低,存在受技术限制的可能性;相比之下,中游封测和下游终端市场领域对美依存度小,受到影响较小。贸易战背景下,一方面设备企业前瞻布局非美国地区零部件采购,另一方面国内代工厂/存储器厂评估国内设备厂商的意愿增强。根据某下游大厂近期的设备采购规划,其2018年国产装备的采购额占总装备采购额的比例仅13%,但从19年开始,国产化率快速提升,预计至2020年将达到30%左右。•下游厂商加速扩产,带动国内半导体设备需求当前大陆成为全球新建晶圆厂最积极的地区,以长江存储/合肥长鑫为代表

对目前微型计算机系统的硬件设备产品进行市场调查和分析?

孝乎
方将踌躇
1.首先需要需要说明一件事情,微型计算机 不等于 微型计算机系统。啥是微型计算机如下图:那么啥又是微型计算机系统呢,如下图至于CPU是啥,存储器分类,I/O设备分类,这些基础性的概念不再累赘,这里只聊一个问题,如上图,在微型计算机系统的组成中,为什么I/O接口和系统总线之间要存在I/O接口?原因在于外设种类繁多,这些设备与CPU之间的工作速度是不同的,不光是这个,信号电平,数据格式都有可能不同,因此为了匹配这些差异,从而出现了I/O接口。从事嵌入式软件开发的工作者,在进行驱动开发时,本质上有很大一部分工作在做I/O接口配置,试想一下,无论你使用哪个微控制器,ADC,DAC,TIM,IIC,SPI,是不是都要配置GPIO?甚至有人说过,所谓的微型计算机 = CPU + 存储器 +I/O接口。这句话虽然不严谨,但是在开发工作中,I/O的确是算得上半壁江山(工作中,CPU是不需要怎么过分的去配置的,CPU买过来已经被生产厂商搞定了,程序员只是拿过来使用)。2.总线是什么,他有故事吗?上面的图中,假如RAM ROM I/O接口 运算器 控制器等如果都代表一个地标(或者一个城市)。那么总线其实就是不同城市之间的交通。一开始是单总线结构如下图红色方框标注的即是总线。因为只有一个,所以挂接在总线上面的其他设备,要排队使用这根线。后来就出现了双总线结构如下图红色方框标注的就是双总线的两根线。再后来又出现了面向主存储器的双总线结构如下图以上是微型计算机系统的相关知识。接下来我们说一些题外话,微控制器的总线是什么样子的呢?我们已stm32F1xx系列为例。3. STM32系统架构从上图可以很明显看到,STM32也是通过总线将存储器和外设连接在一起的。另外这里多了两个DMA。来实现存储器和外设之间的直接数据传输。

请教:DRAM存储器供不应求加剧,四季度合约价持续上涨,国内有哪些上市公司受益?

不文骚
既谓之人
神牛事件驱动的最新资讯:在北美数据中心的需求持续强劲,以及DRAM供给端产能与制程受限制下,并不能满足整体服务器内存市场需求。进入第四季,Server DRAM第四季合约价将持续上涨6%至10%,可望带动厂商营收与利润率表现再创新高。太极实业(600667)是世界第二大DRAM制造商SK海力士的合作伙伴,为SK海力士的DRAM产品提供后工序服务。紫光国芯(002049)是领先的DRAM存储器供应商,DRAM存储器芯片已形成较完整的系列,其特种DRAM产品填补了国内空白。

存储器的分类

长恨歌
捡到钱
一、RAM(Random Access Memory,随机存取存储器)RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。根据组成元件的不同,RAM内存又分为以下十八种:01.DRAM(Dynamic RAM,动态随机存取存储器)这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。02.SRAM(Static RAM,静态随机存取存储器)静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。03.VRAM(Video RAM,视频内存)它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期, FPM DRAM被大量使用。05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。08.WRAM(Window RAM,窗口随机存取存储器)韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。09.RDRAM(Rambus DRAM,高频动态随机存取存储器)Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器)一般的SRAM是非同步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器)CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器)作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器)这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器)这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器)DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。18.DRDRAM (Direct Rambus DRAM)是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。二、ROM(READ Only Memory,只读存储器)ROM是线路最简单半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般应用于PC系统的程序码、主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)等。它的读取速度比RAM慢很多。根据组成元件的不同,ROM内存又分为以下五种:1.MASK ROM(掩模型只读存储器)制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。2.PROM(Programmable ROM,可编程只读存储器)这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入1), 以实现对其“编程”的目的。3.EPROM(Erasable Programmable,可擦可编程只读存储器)这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到阳光直射。4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器)功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。5.Flash Memory(快闪存储器)这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。

内存储器的发展历程

猛鬼帮
倒霉蛋
对于用过386机器的人来说,30pin的内存,我想在很多人的脑海里,一定或多或少的还留有一丝印象,这一次我们特意收集的7根30pin的内存条,并拍成图片,怎么样看了以后,是不是有一种久违的感觉呀! 30pin 反面 30pin 正面 下面是一些常见内存参数的介绍: bit 比特,内存中最小单位,也叫“位”。它只有两个状态分别以0和1表示 byte字节,8个连续的比特叫做一个字节。 ns(nanosecond) 纳秒,是一秒的10亿分之一。内存读写速度的单位,其前面数字越小表示速度越快。 72pin正面 72pin反面 72pin的内存,可以说是计算机发展史的一个经典,也正因为它的廉价,以及速度上大幅度的提升,为电脑的普及,提供了坚实的基础。由于用的人比较多,目前在市场上还可以买得到。 SIMM(Single In-line Memory Moles) 单边接触内存模组。是5X86及其较早的PC中常采用的内存接口方式。在486以前,多采用30针的SIMM接口,而在Pentuim中更多的是72针的SIMM接口,或者与DIMM接口类型并存。人们通常把72线的SIMM类型内存模组直接称为72线内存。 ECC(Error Checking and Correcting) 错误检查和纠正。与奇偶校验类似,它不但能检测到错误的地方,还可以纠正绝大多数错误。它也是在原来的数据位上外加位来实现的,这些额外的位是用来重建错误数据的。只有经过内存的纠错后,计算机操作指令才可以继续执行。当然在纠错是系统的性能有着明显的降低。 EDO DRAM(Extended Data Output RAM) 扩展数据输出内存。是Micron公司的专利技术。有72线和168线之分、5V电压、带宽32bit、基本速度40ns以上。传统的DRAM和FPM DRAM在存取每一bit数据时必须输出行地址和列地址并使其稳定一段时间后,然后才能读写有效的数据,而下一个bit的地址必须等待这次读写操作完成才能输出。EDO DRAM不必等待资料的读写操作是否完成,只要规定的有效时间一到就可以准备输出下一个地址,由此缩短了存取时间,效率比FPM DRAM高20%—30%。具有较高的性/价比,因为它的存取速度比FPM DRAM快15%,而价格才高出5%。因此,成为中、低档Pentium级别主板的标准内存。 DIMM(Dual In-line Memory Moles) 双边接触内存模组。也就是说这种类型接口内存的插板两边都有数据接口触片,这种接口模式的内存广泛应用于现在的计算机中,通常为84针,由于是双边的,所以共有84×2=168线接触,所以人们常把这种内存称为168线内存。 PC133 SDRAM(Synchronous Burst RAM) 同步突发内存。是168线、3.3V电压、带宽64bit、速度可达6ns。是双存储体结构,也就是有两个储存阵列,一个被CPU读取数据的时候,另一个已经做好被读取数据的准备,两者相互自动切换,使得存取效率成倍提高。并且将RAM与CPU以相同时钟频率控制,使RAM与CPU外频同步,取消等待时间,所以其传输速率比EDO DRAM快了13%。SDRAM采用了多体(Bank)存储器结构和突发模式,能传输一整数据而不是一段数据。 SDRAM ECC 服务器专用内存 RDRAM(Rambus DRAM) 是美国RAMBUS公司在RAMBUSCHANNEL技术基础上研制的一种存储器。用于数据存储的字长为16位,传输率极速指标有望达到600MHz。以管道存储结构支持交叉存取同时执行四条指令,单从封装形式上看,与DRAM没有什么不同,但在发热量方面与100MHz的SDRAM大致相当。因为它的图形加速性能是EDO DRAM的3-10倍,所以目前主要应用于高档显卡上做显示内存。 Direct RDRAM 是RDRAM的扩展,它使用了同样的RSL,但接口宽度达到16位,频率达到800MHz,效率更高。单个传输率可达到1.6GB/s,两个的传输率可达到3.2GB/s。 点评: 30pin和72pin的内存,早已退出市场,现在市场上主流的内存,是SDRAM,而SDRAM的价格越降越底,对于商家和厂家而言,利润空间已缩到了极限,赔钱的买卖,有谁愿意去做了?再者也没有必要,毕竟厂家或商家们总是在朝着向“钱”的方向发展。 随着 INTEL和 AMD两大公司 CPU生产飞速发展,以及各大板卡厂家的支持,RAMBUS 和 DDRAM 也得到了更快的发展和普及,究竟哪一款会成为主流,哪一款更适合用户,市场终究会证明这一切的。 机存取存储器是电脑的记忆部件,也被认为是反映集成电路工艺水平的部件。各种存储器中以动态存储器(DRAM)的存储容量为最大,使用最为普及,几十年间它的存储量扩大了几千倍,存取数据的速度提高40多倍。存储器的集成度的提高是靠不断缩小器件尺寸达到的。尺寸的缩小,对集成电路的设计和制造技术提出了极为苛刻的要求,可以说是只有一代新工艺的突破,才有一代集成电路。 动态读写存储器DRAM(Dynamic Random Access MeMory)是利用MOS存储单元分布电容上的电荷来存储数据位,由于电容电荷会泄漏,为了保持信息不丢失,DRAM需要不断周期性地对其刷新。由于这种结构的存储单元所需要的MOS管较少,因此DRAM的集成度高、功耗也小,同时每位的价格最低。DRAM一般都用于大容量系统中。DRAM的发展方向有两个,一是高集成度、大容量、低成本,二是高速度、专用化。 从1970年Intel公司推出第一块1K DRAM芯片后,其存储容量基本上是按每三年翻两番的速度发展。1995年12月韩国三星公司率先宣布利用0.16μm工艺研制成功集成度达10亿以上的1000M位的高速(3lns)同步DRAM。这个领域的竞争非常激烈,为了解决巨额投资和共担市场风险问题,世界范围内的各大半导体厂商纷纷联合,已形成若干合作开发的集团格局。 1996年市场上主推的是4M位和16M位DRAM芯片,1997年以16M位为主,1998年64M位大量上市。64M DRAM的市场占有率达52%;16M DRAM的市场占有率为45%。1999年64M DRAM市场占有率已提高到78%,16M DRAM占1%。128M DRAM已经普及,明年将出现256M DRAM。 高性能RISC微处理器的时钟已达到100MHz~700MHz,这种情况下,处理器对存储器的带宽要求越来越高。为了适应高速CPU构成高性能系统的需要,DRAM技术在不断发展。在市场需求的驱动下,出现了一系列新型结构的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。为了提高动态读写存储器访问速度而采用不同技术实现的DRAM有: (1) 快速页面方式FPM DRAM 快速页面方式FPM(Fast Page Mode)DRAM已经成为一种标准形式。一般DRAM存储单元的读写是先选择行地址,再选择列地址,事实上,在大多数情况下,下一个所需要的数据在当前所读取数据的下一个单元,即其地址是在同一行的下一列,FPM DRAM可以通过保持同一个行地址来选择不同的列地址实现存储器的连续访问。减少了建立行地址的延时时间从而提高连续数据访问的速度。但是当时钟频率高于33MHz时,由于没有足够的充电保持时间,将会使读出的数据不可靠。 (2) 扩展数据输出动态读写存储器EDO DRAM 在FPM技术的基础上发展起来的扩展数据输出动态读写存储器EDODRAM(Extended Data Out DRAM),是在RAM的输出端加一组锁存器构成二级内存输出缓冲单元,用以存储数据并一直保持到数据被可靠地读取时为止,这样就扩展了数据输出的有效时间。EDODRAM可以在50MHz时钟下稳定地工作。 由于只要在原DRAM的基础上集成成本提高并不多的EDO逻辑电路,就可以比较有效地提高动态读写存储器的性能,所以在此之前,EDO DRAM曾成为动态读写存储器设计的主流技术和基本形式。 (3) 突发方式EDO DRAM 在EDO DRAM存储器的基础上,又发展了一种可以提供更高有效带宽的动态读写存储器突发方式EDO DRAM(Burst EDO DRAM)。这种存储器可以对可能所需的4个数据地址进行预测并自动地预先形成,它把可以稳定工作的频率提高到66MHz。 (4) 同步动态读写存储器SDRAM SDRAM(Synchronous DRAM)是通过同步时钟对控制接口的操作和安排片内隔行突发方式地址发生器来提高存储器的性能。它仅需要一个首地址就可以对一个存储块进行访问。所有的输入采样如输出有效都在同一个系统时钟的上升沿。所使用的与CPU同步的时钟频率可以高达66MHz~100MHz。它比一般DRAM增加一个可编程方式寄存器。采用SDRAM可大大改善内存条的速度和性能,系统设计者可根据处理器要求,灵活地采用交错或顺序脉冲。 Infineon Technologies(原Siemens半导体)今年已批量供应256Mit SDRAM。其SDRAM用0.2μm技术生产,在100MHz的时钟频率下输出时间为10ns。 (5) 带有高速缓存的动态读写存储器CDRAM CDRAM(Cached DRAM)是日本三菱电气公司开发的专有技术,1992年推出样品,是通过在DRAM芯片,集成一定数量的高速SRAM作为高速缓冲存储器Cache和同步控制接口,来提高存储器的性能。这种芯片用单一+3.3V电源,低压TTL输入输出电平。目前三菱公司可以提供的CDRAM为4Mb和16Mb,其片内Cache为16KB,与128位内部总线配合工作,可以实现100MHz的数据访问。流水线式存取时间为7ns。 (6) 增强型动态读写存储器EDRAM(Enhanced DRAM) 由Ramtron跨国公司推出的带有高速缓冲存储器的DRAM产品称作增强型动态读写存储器EDRAM(Enhanced DRAM),它采用异步操作方式,单一+5V工作电源,CMOS或TTL输入输出电平。由于采用一种改进的DRAM 0.76μm CMOS工艺和可以减小寄生电容和提高晶体管增益的结构技术,其性能大大提高,行访问时间为35ns,读/写访问时间可以提高到65ns,页面写入周期时间为15ns。EDRAM还在片内DRAM存储矩阵的列译码器上集成了2K位15ns的静态RAM高速缓冲存储器Cache,和后写寄存器以及另外的控制线,并允许SRAM Cache和DRAM独立操作。每次可以对一行数据进行高速缓冲。它可以象标准的DRAM对任一个存储单元用页面或静态列访问模式进行操作,访问时间只有15ns。当Cache未命中时,EDRAM就把新的一行加载到Cache中,并把选择的存储单元数据输出,这需要花35ns。这种存储器的突发数据率可以达到267Mbytes/s。 (7) RDRAM(Rambus DRAM) Rambus DRAM是Rambus公司利用本身研制的一种独特的接口技术代替页面方式结构的一种新型动态读写存储器。这种接口在处理机与DRAM之间使用了一种特殊的9位低压负载发送线,用250MHz同步时钟工作,字节宽度地址与数据复用的串行总线接口。这种接口又称作Rambus通道,这种通道嵌入到DRAM中就构成Rambus DRAM,它还可以嵌入到用户定制的逻辑芯片或微处理机中。它通过使用250MHz时钟的两个边沿可以使突发数据传输率达到500MHz。在采用Rambus通道的系统中每个芯片内部都有它自己的控制器,用来处理地址译码和面页高速缓存管理。由此一片存储器子系统的容量可达512K字节,并含有一个总线控制器。不同容量的存储器有相同的引脚并连接在同一组总线上。Rambus公司开发了这种新型结构的DRAM,但是它本身并不生产,而是通过发放许可证的方式转让它的技术,已经得到生产许可的半导体公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。 被业界看好的下一代新型DRAM有三种:双数据传输率同步动态读写存储器(DDR SDRAM)、同步链动态读写存储器(SLDRAM)和Rambus接口DRAM(RDRAM)。 (1) DDR DRAM(Double Data Rate DRAM) 在同步动态读写存储器SDRAM的基础上,采用延时锁定环(Delay-locked Loop)技术提供数据选通信号对数据进行精确定位,在时钟脉冲的上升沿和下降沿都可传输数据(而不是第一代SDRAM仅在时钟脉冲的下降沿传输数据),这样就在不提高时钟频率的情况下,使数据传输率提高一倍,故称作双数据传输率(DDR)DRAM,它实际上是第二代SDRAM。由于DDR DRAM需要新的高速时钟同步电路和符合JEDEC标准的存储器模块,所以主板和芯片组的成本较高,一般只能用于高档服务器和工作站上,其价格在中低档PC机上可能难以接受。 (2) SLDRAM(Synchnonous Link DRAM) 这是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等业界大公司联合制定的一个开放性标准,委托Mosaid Technologies公司设计,所以SLDRAM是一种原本最有希望成为高速DRAM开放性工业标准的动态读写存储器。它是一种在原DDR DRAM基础上发展的一种高速动态读写存储器。它具有与DRDRAM相同的高数据传输率,但是它比其工作频率要低;另外生产这种存储器不需要支付专利使用费,使得制造成本较低,所以这种存储器应该具有市场竞争优势。但是由于SLDRAM联盟是一个松散的联合体,众多成员之间难以协调一致,在研究经费投入上不能达成一致意见,加上Intel公司不支持这种标准,所以这种动态存储器反而难以形成气候,敌不过Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用于通信和消费类电子产品,高档PC和服务器。 (3) DRDRAM(Direct Rambus DRAM) 从1996年开始,Rambus公司就在Intel公司的支持下制定新一代RDRAM标准,这就是DRDRAM(Direct RDRAM)。这是一种基于协议的DRAM,与传统DRAM不同的是其引脚定义会随命令而变,同一组引脚线可以被定义成地址,也可以被定义成控制线。其引脚数仅为正常DRAM的三分之一。当需要扩展芯片容量时,只需要改变命令,不需要增加硬件引脚。这种芯片可以支持400MHz外频,再利用上升沿和下降沿两次传输数据,可以使数据传输率达到800MHz。同时通过把数据输出通道从8位扩展成16位,这样在100MHz时就可以使最大数据输出率达1.6Gb/s。东芝公司在购买了Rambus公司的高速传输接口技术专利后,于1998年9月首先推出72Mb的RDRAM,其中64Mb是数据存储器,另外8Mb用于纠错校验,由此大大提高了数据读写可靠性。 Intel公司办排众议,坚定地推举DRDRAM作为下一代高速内存的标准,目前在Intel公司对Micro、Toshiba和Samsung等公司组建DRDRAM的生产线和测试线投入资金。其他众多厂商也在努力与其抗争,最近AMD宣布至少今年推出的K7微处理器都不打算采用Rambus DRAM;据说IBM正在考虑放弃对Rambus的支持。当前市场上同样是64Mb的DRAM,RDRAM就要比其他标准的贵45美元。 由此可见存储器的发展动向是:大容量化,高速化, 多品种、多功能化,低电压、低功耗化。 存储器的工艺发展中有以下趋势:CHMOS工艺代替NMOS工艺以降低功耗;缩小器件尺寸,外围电路仍采用ECL结构以提高存取速度同时提高集成度;存储电容从平面HI-C改为深沟式,保证尺寸减少后的电荷存储量,以提高可靠性;电路设计中简化外围电路结构,注意降低噪声,运用冗余技术以提高质量和成品率;工艺中采用了多种新技术;使DRAM的存储容量稳步上升,为今后继续开发大容量的新电路奠定基础。 从电子计算机中的处理器和存储器可以看出ULSI前进的步伐和几十年间的巨大变化。

存储技术发展历史

妻执巾栉
田巴
最早的外置存储器可以追溯到19世纪末。为了解决人口普查的需要,霍列瑞斯首先把穿孔纸带改造成穿孔卡片。他把每个人所有的调查项目依次排列于一张卡片,然后根据调查结果在相应项目的位置上打孔。在以后的计算机系统里,用穿孔卡片输入数据的方法一直沿用到20世纪70年代,数据处理也发展成为电脑的主要功能之一。2、磁带UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。此时这个磁带长达1200英寸、包含8个磁道,每英寸可存储128bits,每秒可记录12800个字符,容量也达到史无前例的184KB。从 此之后,磁带经历了迅速发展,后来广泛应用了录音、影像领域。3、软盘(见过这玩意的一定是80后)1967年 IBM公司推出世界上第一张“软盘”,直径32英寸。随着技术的发展,软盘的尺寸一直在减小,容量也在不断提升,大小从8英寸,减到到5.25英寸软盘,以及到后来的3.5英寸软盘,容量却从最早的81KB到后来的1.44MB。在80-90年代3.5英寸软盘达到了巅峰。直到CD-ROM、USB存储设备出现后,软盘销量才逐渐下滑。4、CDCD也就是我们常说的光盘、光碟,诞生于1982年,最早用于数字音频存储。1985年,飞利浦和索尼将其引入PC,当时称之为CD-ROM(只 读),后来又发展成CD-R(可读)。因为声频CD的巨大成功,今天这种媒体的用途已经扩大到进行数据储存,目的是数据存档和传递。5、磁盘第一台磁盘驱动器是由IBM于1956年生产,可存储5MB数据,总共使用了50个24英寸盘片。到1973年,IBM推出第一个现代“温彻斯特”磁盘驱动器3340,使用了密封组件、润滑主轴和小质量磁头。此后磁盘的容量一度提升MB到GB再到TB。6、DVD数字多功能光盘,简称DVD,是一种光盘存储器。起源于上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。它们的直径多是120毫米左右。容量目前最大可到17.08GB。7、闪存浅谈存储器的进化历程闪存(Flash Memory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信+息)的存储器。包含U盘、SD卡、CF卡、记忆棒等等种类。在1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。与传统电脑内存不同,闪存的特点是非易失性(也就是所存储的数据在主机掉电后不会丢失),其记录速度也非常快。Intel是世界上第一个生产闪存并将其投放市场的公司。到目前为止闪存形态多样,存储容量也不断扩展到256GB甚至更高。随着存储器的更新换代,存储容量越来越大,读写速度也越来越快,企业级硬盘单盘容量已经达到10TB以上,目前使用的SSD固态硬盘,读速度达:3000+MB/s,写速度达:1700MB/s,用起来美滋滋啊。纵观存储技术的发展,从1957年开始发明硬盘,1970年代发明 SAN(Storage Area Network),1980年代发明 NAS(Network Attached Storage),再到2006年发明 Object Storage。从中可以看出,存储技术是不断向上和应用结合的过程,但是这些技术并不是代次的替换,而是场景的扩展,因此即使到现在硬盘、SAN、NAS 技术依然广泛部署在对应场景中。技术发展的过程中,关注技术出现的时间线,可以发现,大约每隔10年就会有新技术的出现。现在是2019年,距离对象存储技术产生已经13年过去了,下一个在存储发展趋势的技术会是什么呢?这也是本次交流想和大家一起探讨的关键点。第一,存储的部署和服务场景不同。SAN(块存储) 和 NAS(文件存储)都是面向数据中心内访问的设备,而对象存储产生的目的根本就不是在数据中心内使用,而是面向互联网、移动互联网(3G、4G、5G)而产生的,为大量使用的网页、视频、图片、音频、文档访问而设计。但在它产生后,为做前向兼容,特别是公共云上被同 Region 内的 ECS(Elastic Compute Service) 访问的场景,也提供了内网 VPC(Virtual Private Cloud) 访问能力。-第二,存储的使用者不同。块存储的使用者是机器,它映射 LUN(Logical Unit Number) 给机器,被机器识别为盘,然后创建文件系统、数据库。NAS 的使用者是办公账号,如 AD(Active Directory) 和 LDAP(Lightweight Directory Access Protocol) 账号,该账号登陆 NAS 设备的 IP(Internet Protocol) 地址就可以访问共享文件夹,用于办公场景;同时,为了兼容机器的访问,也可以让 AD 中的机器访问 NAS。对象存储的使用者是云账号或者社交账号,通过该账号成功登陆云服务后就可以存储数据了,为了兼容历史应用,对象存储也兼容 AD 账号接入,以及支持 ECS 关联 RAM(Resource Access Management) 角色的机器访问。第三,访问协议不同。SAN(块存储) 和 NAS(文件存储) 是基于数据中心内的协议,如 FC、iSCSI、NFS、CIFS、SMB 协议。而对象存储是基互联网访问协议,如基于 HTTP/HTTPS 的 S3(Simple Stoage Service)/OSS(Object Storage Service) 访问接口。

硬盘属于什么类型的存储器

野蛮人
怪兽屋
移动硬盘属于移动存储设备。常见的可移动存储设备1、PD光驱PD光盘采用相变光方式,其数据再生原理与CD光盘一样,是根据反射光量的差以1和0来判别信号。PD光盘与CD光盘形状一样,为了保护盘面数据而装在盒内使用。PD光盘系统采用了在计算机、工作站环境中被广泛使用,与软盘、硬盘同样数据构造的单元格式,而且还采用了在计算机环境内立即可被使用的512bit/单元的MCAV格式,采用该格式可比采用CLV格式的CD-R/CD-RW更高速地进行读写操作,并实现了寻找速度的高速化。2、MO(MagnetoOptical)从MO系统的性能来看,可达到了完全在MO上运行,而不用加载到HDD上的水平。这就大大拓宽了MO的应用领域。这也使得MO具有了更强的技术生命力和市场竞争力。目前的介质技术已使得MO光盘的速度、可靠性、位存储价格、可重写次数、存档时间等方面,达到了令人比较满意的水平。这些特点使得MO在与纯光记录设备CDRW/DVD-RAM的竞争中,处于不可替代的地位。3、活动硬盘一般活动硬盘同样采用Winchester硬盘技术,所以具有固定硬盘的基本技术特征,速度快,平均寻道时间在12毫秒左右,数据传输率可达10M/s,容量从230MB到4.7GB。活动硬盘的盘片和软盘一样,是可以从驱动器中取出和更换的,存储介质是盘片中的磁合金碟片。根据容量不同,活动硬盘的盘片结构分为单片单面、单片双面和双片双面三种,相应驱动器就有单磁头、双磁头和四磁头之分。活动硬盘接口方式现有内置SCSI、内置EIDE、外置SCSI和外置并口等四种方式。用户可以根据自己的需求和计算机的配置情况选择不同的接口方式。4、U盘u盘,全称“USB接口闪存盘”,英文名“USB flash disk”。U盘的称呼最早来源于朗科公司生产的一种新型存储设备,名曰“优盘”,也叫“U盘”,使用USB接口进行连接。USB接口就连到电脑的主机后,U盘的资料就可放到电脑上了。电脑上的数据也可以放到U盘上,很方便。而之后生产的类似技术的设备由于朗科已进行专利注册,而不能再称之为“优盘”,而改称谐音的“U盘”或形象的称之为“闪存”“闪盘”等。后来U盘这个称呼因其简单易记而广为人知,而直到现在这两者也已经通用,并对它们不再作区分。扩展资料:移动存储设备的特点:移动存储设备具有高度集成、快速存取、方便灵活、性价优良、容易保存等性能。从存储介质上来区分。移动存储设备大致分为磁介质存储(如ZIP、LS-120、USB移动硬盘等)、光介质存储(如CD-RW、dvd、MO)和闪存介质存储(如USB闪存盘、各种闪存卡)三种。磁介质存储由于价格高、标准众多,因而较难普及。光介质存储是较为成熟的移动存储解决方案,尤其适合于PC与PC之间的数据交换。基于半导体技术的闪存(Flash Memory)是较为理想的一种移动存储技术。它可以满足计算机应用过程中对低功耗、高可靠性、高存储密度、高读写速度的要求。在价格、可靠性、容量等方面都能满足普通用户的要求,同时又是数字消费产品普遍采用的存储介质。参考资料来源:百度百科--可移动存储设备参考资料来源:百度百科--移动存储

对pc机,人们常提到的"pentium"、"pentium iv"指的是_____。a存储器b内存品牌c

真田
极盗者
pentium iv指的是奔腾第四代处理器,属于微处理器,微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是微型计算机的运算控制部分。它可与存储器和外围电路芯片组成微型计算机。pentium iv采用了Willamette核心和Socket 423封装,具256KB二级缓存以及400MHz前端总线。之后由于接口类型的改变,又出现了采用illamette核心和Socket478封装的P4产品。扩展资料电脑常用的CPU就是一种大型的微处理器,这种微处理器大多数是通过二进制的方法来处理数据,进位与溢出就是它常用的工作方式。这是逻辑部件的主要工作,而微型处理器中海油寄存部件,因为通过逻辑部件计算后得到的结果需要通过寄存部件来存储,最后才通过电信号转化的方式传输给其他的电子元件,可以说微处理器是一个非常伟大的发明。参考资料来源:百度百科-奔腾4